
An improved Bug-type navigation algorithm for mobile robots

 Yi Zhu1, Tao Zhang1, Jingyan Song1, Xiaqin Li1, Xuedong Chen2, Masatoshi Nakamura3
1Department of Automation, School of Information Science and Technology,

Tsinghua University, Beijing 100084, China
 (Email: zhu-y07@mails.tsinghua.edu.cn)

2School of Mechanical Science and Engineering,
Huazhong University of Science and Technology, Wuhan 430074, China

3Research Institute of Systems Control, Saga University, Saga 840-0047, Japan

Abstract: An improved Bug-type navigation algorithm that ensures convergence is proposed in this paper by integrating more
heuristic information abstracted from the range data in the authors’ previous work. While some similar concepts have been
proposed before, the improved algorithm has fully considered many implementation issues that are ignored in the related
works and therefore it is more practical than these works. Simulations show that compared with the authors’ previous work, the
improved algorithm can generate shorter average path length. Experiments on a real robot further verified its practicability.

Keywords: mobile robot; navigation; Bug algorithm; range sensor

1 INTRODUCTION

Autonomous navigation is an important research topic

in mobile robotics. In many applications, the workspace is

previously unknown and the robot has to utilize the sensory

data to decide its motion, which significantly increases the

difficulty of navigation. A common problem of many

sensor-based navigation algorithms is that the robot may be

trapped before reaching the goal when it encounters

obstacles with complex boundaries, which is usually termed

the local minima problem [1], [2]. Many efforts have been

made to solve this problem and a well-known concept is the

Bug model [3] which is focused on in this paper.

In the Bug model, the robot is assumed as a point

moving in a 2D plane and it has only two motion modes:

moving toward the goal and boundary following. It has

been proved that if the switching criteria between the two

modes are properly designed, the robot can converge to the

goal as long as the goal is reachable (otherwise it will report

failure). Due to its simplicity and convergence proof, the

Bug model has attracted much attention. A series of

algorithms have then been proposed based on this model,

and they are often termed the Bug algorithms [4]. However,

most existing Bug algorithms mainly focus on designing

the switch criteria to ensure convergence and optimize the

path, but ignore the implementation issues. As a result, the

applicability of the algorithm may be affected. Focusing on

this problem, we have proposed a new Bug-type algorithm

in [5]. This algorithm presents not only a group of new

switch criteria, but also a control strategy to implement it

on real robots. The control strategy is also valid for many

other Bug algorithms. Furthermore, it can generate shorter

path than some previous Bug algorithms.

In this paper, the aforementioned algorithm (it is termed

the original algorithm below) is further improved by

integrating more heuristic information abstracted from the

range data to optimize the generated path. The remainder of

this paper is arranged as follows: related works are briefly

reviewed in Section 2; our work is presented in Section 3

and the experimental studies are presented in Section 4.

2 RELATED WORKS

Since most Bug algorithms can ensure convergence,

their performances mainly differ in the path length. Hence

how to shorten the generated path is the main problem

discussed in most previous works. The most common

strategy is to design new switch criteria and our previous

work [5] followed this way. Another method is to bypass

the obstacles in advance by exploiting the sensory data.

This idea firstly appeared in the VisBug algorithm [6],

which improves the classical Bug2 algorithm [3] by using

range data to find shortcuts of the original path. Based on a

similar concept, TangentBug [7] constructs a “local tangent

graph” based on the range data in every control cycle to

guide the robot. Undoubtedly, exploiting the sensory data is

beneficial to navigation. However, these two algorithms

assume that any obstacle boundary can be continuously

detected. Actually, due to the limited angular resolution, the

practical range sensors can only detect the nearest obstacle

point in a sector as shown in Fig. 1. Hence it is difficult to

well realize these two algorithms since identification errors

may occur [4], [8]. In this paper, a concept similar to

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12),
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 1103

VisBug and TangentBug is proposed and integrated in our

previous works to further improve its performance. A

significant difference is that the angular resolution problem

and many other implementation issues have been fully

considered in the improved algorithm.

Fig. 1. The angular resolution of the practical range sensors: the robot
can only detect eight obstacle points but not two continuous boundaries.

3 THE IMPROVED ALGORITHM

The improved algorithm consists of two reactive motion

modes: moving toward the goal (Mode 1) and boundary

following (Mode 2). They are respectively described below.

3.1 Motion toward the Goal

In Mode 1, the motion direction is selected by two steps.

First, a rough direction Rθ that may lead to an optimal

path is selected based on heuristic information abstracted

from the range data. Then an exact direction Eθ for

obstacle avoidance is calculated based on Rθ . Note that all

the angles in this paper refer to the robot-fixed coordinates

where the current robot direction is 0° and the angle

increases in the anticlockwise direction.

In the first step, the key issue is how to abstract useful

heuristic information from the range data. Assumed that the

detectable view of the robot is divided into N sectors due

to the angular resolution of range sensors as shown in Fig. 1

and each sector is labeled by an integer (a specific sector

can be labeled as Sector 1 and the integer increases in the

anticlockwise direction), an index set I that contains

useful heuristic information can be defined as

{ }| (2())

(1) (1) 1

1 , (1) 1

(1) 1

i i j j i ji d L r D d L d d

i i i N

i N j N i i

i i N

≠ ∧ − ≥ + ∨ = ∧ <

− ∨ + < <⎧
⎪≤ ≤ = ∨ + =⎨
⎪ − ∨ =⎩

O O

(1)

where “∨ ”, “∧ ” are “logic or” and “logic and”, iO and

id are respectively the position of the nearest obstacle

point in the i th sector and the distance to this point, r is

the robot radius, D is the predefined safe distance to

obstacles, L is the detectable distance (if there is no

obstacle in the i th sector, id L=). I contains the

indexes of the key obstacle points which are the endpoints

of the gaps between different obstacles, e.g., the point A, D,

E, H in Fig. 1. A, H are termed “left jump point” and D, E

are termed “right jump point”. As shown in Fig. 1, if the

goal is located in the gaps, the robot can approach it directly.

If the goal is located behind any obstacle, the directions of

the key obstacle points correspond to the shortest path for

bypassing the obstacle.

Based on the above concept, only the goal direction Gθ

and the directions indexed by (1) are considered as

candidates for Rθ . However, three practical issues should

also be considered. First, it is not safe to directly moving to

a key obstacle point. Second, it is not wise to select a

direction whose corresponding gap is not wide enough to

go through. Third, the possible errors caused by the angular

resolution and sensor inaccuracy should be considered.

To solve the first problem, the directions indexed by (1)

are slightly revised by

()
2()

otherwise

arcsin()
1

,
1

arctan()

i i i j j
i

i i

i
i

i

i
i

r D d L
f

r D
d r D

i i N d
j

i N r D
d r D

d

θ θ
θ

θ θ

θ

⎧ + Δ − ≥ + ∨ =⎪= ⎨
− Δ⎪⎩

+⎧ > +⎪+ <⎧ ⎪= Δ =⎨ ⎨= +⎩ ⎪ ≤ +
⎪⎩

O O

(2)

where iθ is the original direction indexed by (1). An

example is shown in Fig. 2. Such a revision can guide the

robot to smoothly bypass an obstacle.

(a) (b)

Fig. 2. An example of revising the directions (R is the robot center; A is
a right jump point and therefore the direction should be decreased): (a)

id r D> + ; (b) id r D≤ + .

To solve the second problem, a precise method requires

expensive computations. Hence a rough method is proposed:

if there is no obstacle in a zone near the selected direction,

the gap corresponding to this direction is considered as

wide enough to go through. An example is shown in Fig. 3.

As to the third problem, due to the angular resolution,

the relative position between the robot and the obstacle will

affect the judgment of whether an obstacle point is a jump

point indexed by (1). As an example shown in Fig. 4 (0θ is

the minimal detective angle), the robot is initially at R1 and

A

R SΘ
iθ ′

SΘ
iθ

SΘ

r D+

B
R

SΘ
iθ

SΘ
iθ ′

A

SΘ

r D+

B

Sector i

Obstacle

Detectable distance

Robot

A

B

C

D

A is the nearest obstacle
point in this sector

E

F

G

H

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12),
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 1104

it judges that B is not a jump point since 1D is short.

However, assumed that the robot moves to the jump point A,

when it reaches R2, B may be misjudged as a jump point

since 2D is long enough. Then the robot may move to B,

which will cause a zigzag path. To solve this problem, it is

required that if the robot selected a left (right) jump point as

Rθ in the last cycle, the jump point will be recorded and in

the current cycle, the robot can only select Rθ in the left

(right) half-side of the vector from the current robot

position to this jump point, i.e., the “admissible half-side”

shown in Fig. 4. In Addition, the sensor inaccuracy

sometimes also affects the judgment. Hence another

constraint is added: if the robot selected a left (right) jump

point in the last cycle, it cannot select a right (left) jump

point in the current cycle unless it have attempted to select

right (left) jump point in five successive cycles (one cycle

is about 100ms in our experiments).

(a) (b)

Fig. 3. An example of roughly examining whether a gap is wide enough
to go through (B is the same point as shown in Fig. 2; R is the robot center;
G is the goal): (a) if the direction is indexed by (1), the examined zone is a
sector on the opposite side of the corresponding obstacle; (b) if the
direction is the goal direction, the zone is a rectangle.

Fig. 4. An example of the misjudgment caused by the angular resolution.

Considering all the issues discussed above, Rθ is

finally calculated by

()
() { }

() { }{ }
()

0 1

0

1

1 1

C
, arg min

C

| 90 , 1

,

S

i S

R i G
i IS

S i free i G

N G N G

f I
i

f RO I

I i W W f i I N

f W W

θ
θ θ θ

θ θ

θ θ

∈

+ +

⎧ ≠ ∅ ∧⎪= = −⎨
∠ ≠ ∅ ∧⎪⎩

= ⊂ ∧ − < ∈ +

= =

D

JJJG

∪

(3)
where RO∠

JJJG
 is the angle of the vector from the current

robot position to the last jump point that has been used as

Rθ , f is the map function described in (2), iW , GW are

respectively the corresponding zone of iθ and Gθ as

shown in Fig. 3, freeW is the free workspace,
1C is

satisfied if any following event occurs: 0i in the current or

last cycle indexes the goal direction; both 0i in the current

and last cycle index left or right jump point; no above event

has occurred in five successive cycles including the current

cycle. In addition, if SI = ∅ , which implies that there is

no collision-free direction for approaching the goal (usually

caused by a dead corner and sometimes by the sensor

inaccuracy), then R Gθ θ≡ until the robot switches to the

mode of boundary following.

After selecting Rθ , Eθ can be calculated by

{ }
{ }

arg min

| 90

E R

G S

θ
θ θ θ

θ θ θ θ
∈Θ

= −

Θ = − < ° ∧ ∈ Θ
 (4)

where SΘ is the current set of the directions that the robot

can keep a safe distance D from obstacles. Note that if

R Gθ θ= , (4) is degraded to the criterion in the original

algorithm [5]. In another word, R Gθ θ≡ in the original

algorithm, but there are more candidates in the improved

algorithm and the one that may generate the optimal path

according to the heuristic information will be selected.

If Θ = ∅ , which implies that there is no direction that

can both shorten the goal distance and maintain safe for

collision avoidance, the robot will switch to Mode 2 after

selecting a boundary following direction dir . Such a

position is termed a hit-point and each hit-point and the

selected dir will be recorded in a list termed Hit-list.

3.2 Boundary Following

Mode 2 is the same as the original algorithm. The

concept of finding shortcuts as VisBug and TangentBug are

not adopted since it is difficult to always correctly

recognize the points in the followed boundary from the

range data (we have tried many methods) and it may cause

navigation failure. In Mode 2, the robot will record the

minimal goal distance Mind and resume Mode 1 once

Min

Min

0 180 if R

180 0 if L
G

G

d d dir

d d dir

θ
θ

° < < ° ∧ < =⎧
⎨− ° < < ° ∧ < =⎩

 (5)

where “ L ” and “ R ” represent “left” and “right” to the

obstacle, d is the current goal distance. Such a position is

termed a leave-point. Additionally, the boundary following

direction will be reversed if a previous hit-point (not the

current hit-point, i.e., the start point of the current boundary

following motion) is met with the same dir as the record

in Hit-list (this record is concurrently deleted). Furthermore,

if the above event has not occurred after the last time that

the robot passed the current hit-point but the current hit-

R1

R2

A B
SΘ

1D

SΘ
2D

SΘ
0θ Admissible

 half-side

R

G

SΘ

r D+

SΘ

r D+

Free

SΘ
Gθ SΘ

()if θ
R

Free

B

SΘ

r D+

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12),
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 1105

point is met again, the robot can stop and report that the

goal is unreachable [5].

3.3 Convergence Analysis

The improved algorithm can be proved to be convergent.

A proof sketch is presented below (the detail is omitted due

to the limited space).

It can be proved that there are only finite mode switches

and the robot can always switch to Mode 1 from Mode 2 if

the goal is reachable [5]. Hence the final mode is Mode 1 if

the goal is reachable. According to (4), the goal distance

always decreases in Mode 1 even if there are misjudgments

for selecting Rθ since 90E Gθ θ− < D . Therefore, the

robot can always reach the goal in Mode 1 as long as it is

reachable. Otherwise, it will stop and report that the goal is

unreachable in Mode 2.

4 EXPERIMENTAL RESULTS

Based on the MobileSim simulation platform and a

model of Pioneer3-AT robot, the improved algorithm has

been tested in two environments shown in Fig. 5 with 100

randomly selected start/goal points. The two motion modes

are realized by the same control strategy proposed in [5]. In

all the simulations, the robot has reached the goal, which

verifies the convergence of the improved algorithm. For

comparison, the original algorithm has also been simulated

in the same conditions. As shown in Table 1, the average

path length (APL, which is presented as the relative value

to the globally shortest path) generated by the improved

algorithm is shorter than the original algorithm in both the

environments. The reason is that compared with the original

algorithm, the improved algorithm can often shorten the

path by bypassing the obstacles in advance with the help of

the heuristic information abstracted from the range data.

(a) (b)

Fig. 5. Two simulation results (S is the start point; G is the goal; Path1,
Path2 are the paths generated by the original and improved algorithm): (a)

environments containing scattered obstacles; (b) a maze environment.

TABLE 1 AVERAGE PATH LENGTH (APL) OF THE SIMULATIONS

Environment Original Algorithm Improved Algorithm

Scattered Obstacles 1.983 1.409

Maze 2.233 2.108

The improved algorithm has also been implemented on

a real Pioneer3-AT robot. An experimental result is

presented in Fig. 6: the robot successfully bypasses the

obstacles in advance and finally reaches the goal.

Fig. 6. An experiment on a real robot in an office environment.

5 CONCLUSION

An improved Bug-type algorithm that ensures

convergence is proposed in this paper for robot navigation.

It improves our previous work [5] by integrating more

heuristic information abstracted from the range data to

guide the robot. Compared with the similar concepts

proposed in VisBug and TangentBug, the improved

algorithm is more practical since it has fully considered

many implementation issues that are ignored in the these

works. Simulations show that it can generate shorter APL

than the original algorithm. Experiments on a real robot

have further verified its practicability.

REFERENCES

[1] Motlagh O R E, Hong T S, Ismail N (2008),
Development of a new minimum avoidance system for a
behavior-based mobile robot. Fuzzy Sets Syst. 160: 1929-
1946.

[2] Zhang T, Zhu Y, Song J (2010), Real time motion
planning for mobile robots by means of artificial potential
field method in unknown environment. Ind. Robot 37(4):
384-400.

[3] Lumelsky V, Stepanov A (1987), Path-planning
strategies for a point mobile automaton moving amidst
unknown obstacles of arbitrary shape. Algorithmica 2: 403-
430.

[4] Ng J, Braunl T (2007), Performance comparison of
bug navigation algorithms. J. Intell. Robot. Syst. 50: 73-84.

[5] Zhu Y, Zhang T, Song J, Li, X (2010), A new Bug-
type navigation algorithm considering practical
implementation issues for mobile robots. ROBIO: 531 - 536.

[6] Lumelsky V and Skewis T (1990), Incorporating
range sensing in the robot navigation function, IEEE Trans.
Syst. Man Cybern. 20(5): 1058-1069.

[7] Kamon I, Rimon E, Rivlin E (1998), TangentBug: a
range-sensor-based navigation algorithm. Int. J. Robot. Res.
17(9): 934-953.

[8] Yun X, Tan K-C (1997), A wall-following method for
escaping local minima in potential field based motion
planning. ICAR: 421-426.

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12),
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 1106

