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Abstract: An improved Bug-type navigation algorithm that ensures convergence is proposed in this paper by integrating more 
heuristic information abstracted from the range data in the authors’ previous work. While some similar concepts have been 
proposed before, the improved algorithm has fully considered many implementation issues that are ignored in the related 
works and therefore it is more practical than these works. Simulations show that compared with the authors’ previous work, the 
improved algorithm can generate shorter average path length. Experiments on a real robot further verified its practicability. 
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1 INTRODUCTION 

Autonomous navigation is an important research topic 

in mobile robotics. In many applications, the workspace is 

previously unknown and the robot has to utilize the sensory 

data to decide its motion, which significantly increases the 

difficulty of navigation. A common problem of many 

sensor-based navigation algorithms is that the robot may be 

trapped before reaching the goal when it encounters 

obstacles with complex boundaries, which is usually termed 

the local minima problem [1], [2]. Many efforts have been 

made to solve this problem and a well-known concept is the 

Bug model [3] which is focused on in this paper. 

In the Bug model, the robot is assumed as a point 

moving in a 2D plane and it has only two motion modes: 

moving toward the goal and boundary following. It has 

been proved that if the switching criteria between the two 

modes are properly designed, the robot can converge to the 

goal as long as the goal is reachable (otherwise it will report 

failure). Due to its simplicity and convergence proof, the 

Bug model has attracted much attention. A series of 

algorithms have then been proposed based on this model, 

and they are often termed the Bug algorithms [4]. However, 

most existing Bug algorithms mainly focus on designing 

the switch criteria to ensure convergence and optimize the 

path, but ignore the implementation issues. As a result, the 

applicability of the algorithm may be affected. Focusing on 

this problem, we have proposed a new Bug-type algorithm 

in [5]. This algorithm presents not only a group of new 

switch criteria, but also a control strategy to implement it 

on real robots. The control strategy is also valid for many 

other Bug algorithms. Furthermore, it can generate shorter 

path than some previous Bug algorithms. 

In this paper, the aforementioned algorithm (it is termed 

the original algorithm below) is further improved by 

integrating more heuristic information abstracted from the 

range data to optimize the generated path. The remainder of 

this paper is arranged as follows: related works are briefly 

reviewed in Section 2; our work is presented in Section 3 

and the experimental studies are presented in Section 4. 

 

2 RELATED WORKS 

Since most Bug algorithms can ensure convergence, 

their performances mainly differ in the path length. Hence 

how to shorten the generated path is the main problem 

discussed in most previous works. The most common 

strategy is to design new switch criteria and our previous 

work [5] followed this way. Another method is to bypass 

the obstacles in advance by exploiting the sensory data. 

This idea firstly appeared in the VisBug algorithm [6], 

which improves the classical Bug2 algorithm [3] by using 

range data to find shortcuts of the original path. Based on a 

similar concept, TangentBug [7] constructs a “local tangent 

graph” based on the range data in every control cycle to 

guide the robot. Undoubtedly, exploiting the sensory data is 

beneficial to navigation. However, these two algorithms 

assume that any obstacle boundary can be continuously 

detected. Actually, due to the limited angular resolution, the 

practical range sensors can only detect the nearest obstacle 

point in a sector as shown in Fig. 1. Hence it is difficult to 

well realize these two algorithms since identification errors 

may occur [4], [8]. In this paper, a concept similar to 
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VisBug and TangentBug is proposed and integrated in our 

previous works to further improve its performance. A 

significant difference is that the angular resolution problem 

and many other implementation issues have been fully 

considered in the improved algorithm. 

 
Fig. 1.  The angular resolution of the practical range sensors: the robot 
can only detect eight obstacle points but not two continuous boundaries. 

3 THE IMPROVED ALGORITHM 

The improved algorithm consists of two reactive motion 

modes: moving toward the goal (Mode 1) and boundary 

following (Mode 2). They are respectively described below. 

3.1 Motion toward the Goal 

In Mode 1, the motion direction is selected by two steps. 

First, a rough direction Rθ  that may lead to an optimal 

path is selected based on heuristic information abstracted 

from the range data. Then an exact direction Eθ  for 

obstacle avoidance is calculated based on Rθ . Note that all 

the angles in this paper refer to the robot-fixed coordinates 

where the current robot direction is 0° and the angle 

increases in the anticlockwise direction. 

In the first step, the key issue is how to abstract useful 

heuristic information from the range data. Assumed that the 

detectable view of the robot is divided into N  sectors due 

to the angular resolution of range sensors as shown in Fig. 1 

and each sector is labeled by an integer (a specific sector 

can be labeled as Sector 1 and the integer increases in the 

anticlockwise direction), an index set I  that contains 

useful heuristic information can be defined as 
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where “∨ ”, “∧ ” are “logic or” and “logic and”, iO  and 

id  are respectively the position of the nearest obstacle 

point in the i th sector and the distance to this point, r  is 

the robot radius, D  is the predefined safe distance to 

obstacles, L  is the detectable distance (if there is no 

obstacle in the i th sector, id L= ). I  contains the 

indexes of the key obstacle points which are the endpoints 

of the gaps between different obstacles, e.g., the point A, D, 

E, H in Fig. 1. A, H are termed “left jump point” and D, E 

are termed “right jump point”. As shown in Fig. 1, if the 

goal is located in the gaps, the robot can approach it directly. 

If the goal is located behind any obstacle, the directions of 

the key obstacle points correspond to the shortest path for 

bypassing the obstacle. 

Based on the above concept, only the goal direction Gθ  

and the directions indexed by (1) are considered as 

candidates for Rθ . However, three practical issues should 

also be considered. First, it is not safe to directly moving to 

a key obstacle point. Second, it is not wise to select a 

direction whose corresponding gap is not wide enough to 

go through. Third, the possible errors caused by the angular 

resolution and sensor inaccuracy should be considered. 
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where iθ  is the original direction indexed by (1). An 

example is shown in Fig. 2. Such a revision can guide the 

robot to smoothly bypass an obstacle. 

 
(a)                        (b)  

Fig. 2.  An example of revising the directions (R is the robot center; A is 
a right jump point and therefore the direction should be decreased): (a) 

id r D> + ; (b) id r D≤ + . 

To solve the second problem, a precise method requires 

expensive computations. Hence a rough method is proposed: 

if there is no obstacle in a zone near the selected direction, 

the gap corresponding to this direction is considered as 

wide enough to go through. An example is shown in Fig. 3. 

As to the third problem, due to the angular resolution, 

the relative position between the robot and the obstacle will 

affect the judgment of whether an obstacle point is a jump 

point indexed by (1). As an example shown in Fig. 4 ( 0θ  is 

the minimal detective angle), the robot is initially at R1 and 
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it judges that B is not a jump point since 1D  is short. 

However, assumed that the robot moves to the jump point A, 

when it reaches R2, B may be misjudged as a jump point 

since 2D  is long enough. Then the robot may move to B, 

which will cause a zigzag path. To solve this problem, it is 

required that if the robot selected a left (right) jump point as 

Rθ  in the last cycle, the jump point will be recorded and in 

the current cycle, the robot can only select Rθ  in the left 

(right) half-side of the vector from the current robot 

position to this jump point, i.e., the “admissible half-side” 

shown in Fig. 4. In Addition, the sensor inaccuracy 

sometimes also affects the judgment. Hence another 

constraint is added: if the robot selected a left (right) jump 

point in the last cycle, it cannot select a right (left) jump 

point in the current cycle unless it have attempted to select 

right (left) jump point in five successive cycles (one cycle 

is about 100ms in our experiments). 

 
(a)                        (b)  

Fig. 3.  An example of roughly examining whether a gap is wide enough 
to go through (B is the same point as shown in Fig. 2; R is the robot center; 
G is the goal): (a) if the direction is indexed by (1), the examined zone is a 
sector on the opposite side of the corresponding obstacle; (b) if the 
direction is the goal direction, the zone is a rectangle. 

 
Fig. 4.  An example of the misjudgment caused by the angular resolution. 

Considering all the issues discussed above, Rθ  is 

finally calculated by 
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where RO∠

JJJG
 is the angle of the vector from the current 

robot position to the last jump point that has been used as 

Rθ , f  is the map function described in (2), iW , GW  are 

respectively the corresponding zone of iθ  and Gθ  as 

shown in Fig. 3, freeW  is the free workspace, 
1C  is 

satisfied if any following event occurs: 0i  in the current or 

last cycle indexes the goal direction; both 0i  in the current 

and last cycle index left or right jump point; no above event 

has occurred in five successive cycles including the current 

cycle. In addition, if SI = ∅ , which implies that there is 

no collision-free direction for approaching the goal (usually 

caused by a dead corner and sometimes by the sensor 

inaccuracy), then R Gθ θ≡  until the robot switches to the 

mode of boundary following. 

After selecting Rθ , Eθ  can be calculated by 
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where SΘ  is the current set of the directions that the robot 

can keep a safe distance D  from obstacles. Note that if 

R Gθ θ= , (4) is degraded to the criterion in the original 

algorithm [5]. In another word, R Gθ θ≡  in the original 

algorithm, but there are more candidates in the improved 

algorithm and the one that may generate the optimal path 

according to the heuristic information will be selected. 

If Θ = ∅ , which implies that there is no direction that 

can both shorten the goal distance and maintain safe for 

collision avoidance, the robot will switch to Mode 2 after 

selecting a boundary following direction dir . Such a 

position is termed a hit-point and each hit-point and the 

selected dir  will be recorded in a list termed Hit-list. 

3.2 Boundary Following 

Mode 2 is the same as the original algorithm. The 

concept of finding shortcuts as VisBug and TangentBug are 

not adopted since it is difficult to always correctly 

recognize the points in the followed boundary from the 

range data (we have tried many methods) and it may cause 

navigation failure. In Mode 2, the robot will record the 

minimal goal distance Mind  and resume Mode 1 once 
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where “ L ” and “ R ” represent “left” and “right” to the 

obstacle, d  is the current goal distance. Such a position is 

termed a leave-point. Additionally, the boundary following 

direction will be reversed if a previous hit-point (not the 

current hit-point, i.e., the start point of the current boundary 

following motion) is met with the same dir  as the record 

in Hit-list (this record is concurrently deleted). Furthermore, 

if the above event has not occurred after the last time that 

the robot passed the current hit-point but the current hit-
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point is met again, the robot can stop and report that the 

goal is unreachable [5]. 

3.3 Convergence Analysis 

The improved algorithm can be proved to be convergent. 

A proof sketch is presented below (the detail is omitted due 

to the limited space). 

It can be proved that there are only finite mode switches 

and the robot can always switch to Mode 1 from Mode 2 if 

the goal is reachable [5]. Hence the final mode is Mode 1 if 

the goal is reachable. According to (4), the goal distance 

always decreases in Mode 1 even if there are misjudgments 

for selecting Rθ  since 90E Gθ θ− < D . Therefore, the 

robot can always reach the goal in Mode 1 as long as it is 

reachable. Otherwise, it will stop and report that the goal is 

unreachable in Mode 2. 

 

4 EXPERIMENTAL RESULTS 

Based on the MobileSim simulation platform and a 

model of Pioneer3-AT robot, the improved algorithm has 

been tested in two environments shown in Fig. 5 with 100 

randomly selected start/goal points. The two motion modes 

are realized by the same control strategy proposed in [5]. In 

all the simulations, the robot has reached the goal, which 

verifies the convergence of the improved algorithm. For 

comparison, the original algorithm has also been simulated 

in the same conditions. As shown in Table 1, the average 

path length (APL, which is presented as the relative value 

to the globally shortest path) generated by the improved 

algorithm is shorter than the original algorithm in both the 

environments. The reason is that compared with the original 

algorithm, the improved algorithm can often shorten the 

path by bypassing the obstacles in advance with the help of 

the heuristic information abstracted from the range data. 

 
(a)                        (b)  

Fig. 5.  Two simulation results (S is the start point; G is the goal; Path1, 
Path2 are the paths generated by the original and improved algorithm): (a) 

environments containing scattered obstacles; (b) a maze environment. 

TABLE 1  AVERAGE PATH LENGTH (APL) OF THE SIMULATIONS 

Environment Original Algorithm Improved Algorithm

Scattered Obstacles 1.983 1.409 

Maze 2.233 2.108 

The improved algorithm has also been implemented on 

a real Pioneer3-AT robot. An experimental result is 

presented in Fig. 6: the robot successfully bypasses the 

obstacles in advance and finally reaches the goal. 

 
Fig. 6.  An experiment on a real robot in an office environment. 

5 CONCLUSION 

An improved Bug-type algorithm that ensures 

convergence is proposed in this paper for robot navigation. 

It improves our previous work [5] by integrating more 

heuristic information abstracted from the range data to 

guide the robot. Compared with the similar concepts 

proposed in VisBug and TangentBug, the improved 

algorithm is more practical since it has fully considered 

many implementation issues that are ignored in the these 

works. Simulations show that it can generate shorter APL 

than the original algorithm. Experiments on a real robot 

have further verified its practicability. 
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