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Abstract: In this paper, we present a computational model for source recognition in acoustic sensor arrays. The proposed model
uses a hybrid method of neural networks to create symbols then hidden Markov models that collectively learn to discriminate se-
quences of symbols from a collection of recordings from bird species with minimum human intervention. Preliminary simulation
results indicate that this model is capable of producing acceptable levels of classification performance.
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1 INTRODUCTION
Over the last few years, we have been engaged in a re-

search program that aims at understanding the capabilities
and limitations of sensor arrays in habitat monitoring appli-
cations [1]. Particularly, we have developed acoustic sen-
sor arrays for monitoring the diversity and behavior of bird
species at several locations in Mexico and in the US. More
recently, our research program has evolved towards the ap-
plication of this technology for understanding the structure
and function of bird song.

As part of this study, we have focused on developing ro-
bust filters that are able to discriminate bird species, and in
some cases, bird individuals with reasonably high accuracy.
Specifically, we have explored the use of unsupervised learn-
ing methods such as self-organizing maps [11][13], and su-
pervised learning methods such as support vector machines
[12], among others. We have had success with the use of
hidden Markov models (HMMs) for this problem [9].

We believe that given the appropriate conditions, an array
of sensors should be able to self-organize so as to behave
as a single ensemble [4][8]. In this idealization, sensors can
identify and collectively learn to classify events of interest
from an arbitrary acoustic recording stream, with minimal
human intervention. This ability is at the core of what is
required for achieving adaptive behavior and communication
in sensor arrays.

Towards this end, we developed a computational model
for source recognition in acoustic sensor arrays. The pro-
posed model uses hidden Markov models that self-organize
to discriminate a collection of input sequences with mini-
mal human intervention. We chose HMMs for its ability to
discriminate input sequences of arbitrary length, which have
proven difficult for alternative classification methods.

Particularly, we introduce a collective learning algorithm

that enable a collection of HMMs to learn to classify four
different species of antbirds. In the collective learning pro-
cedure, a sensor detects an input sequence from the input
stream and uses its HMM to determine its corresponding out-
put. The sensor output is then combined with those of its
neighbor sensors to produce a consensus output. The sen-
sor then computes the maximum likelihood estimators from
these consensus sequences to update its parameters, and the
learning process continues.

The overall objective of this self-organizing learning pro-
cess is to enable HMMs to accurately classify the input se-
quences and to converge to consistent collective classifica-
tions along the array. We used recordings obtained from our
field studies in a tropical rainforest in Chiapas, Mexico. From
these recordings, we constructed a collection of training sets
consisting of tokenized sequences of bird songs.

2 METHODS
2.1 Self-organizing HMMs

In the proposed model, the classification of bird species
is produced by hidden Markov models (HMMs). HMMs are
extensions of Markov chains in which an observation is a
probabilistic function of the state [7].

Formally, a hidden Markov model is a 4-tuple
(Q, Σ, A, E), where

1. Q is a finite set of states,

2. Σ is an alphabet of symbols,

3. A = (akl) is a |Q| × |Q| matrix of state transition prob-
abilities,

4. E = (ek(b)) is a |Q| × |Σ| matrix of emission probabil-
ities
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Let M = (Q, Σ, A, E) be a hidden Markov model. A path
π = π1 . . . πn is a sequence of states. The probability that a
sequence x of symbols from the alphabet Σ was generated by
the path π is

P (x|π) =

n∏

t=1

P (xi|πi)P (πi|πi+1) =

n∏

i=1

eπi
(xi) · aπi,πi+1

The decoding problem is formulated as to find the opti-
mal path π∗ = argmaxπ P (x|π) for x such that P (x|π) is
maximized.

The solution of the decoding problem is provided by the
Viterbi algorithm [7]. The idea is that the optimal path for
the (i + 1) prefix x1 . . . xi+1 of x uses a path for an i-prefix
of x that is optimal among the paths ending in an unknown
state πi = k ∈ Q.

Define sk(i) as the probability of the most probable path
for the prefix x1 . . . xi that ends with state k (k ∈ Q and
1 ≤ i ≤ n). Then

sl(i + 1) = el(xi+1) · max
k∈Q

{sk · akl}

Let M = (Q, Σ, A, E) be a hidden Markov model and
x = x1 · · ·xn be a string over the alphabet Σ. The HMM
M produces the output o in response to input x, M(x) = o,
if a sequence of states π = π0 . . . πn exists in Q with the
following conditions:

1. π is the optimal path π∗ given the sequence x and the
hidden Markov model M , and

2. π∗

i
= oi (1 ≤ i ≤ n) is the state of the optimal path π∗

given the sequence x and the hidden Markov model M .

2.2 Learning algorithm
For this study, we devised a collective learning algorithm

for HMMs. The model comprises a collection of randomly
generated HMMs. For each input in the training set, an HMM
uses the consensus optimal path of the HMMs in its neigh-
borhood as its target output. The consensus optimal path is
obtained from the neighbor HMMs by voting. The maximum
likelihood estimators are then computed from the set of tar-
get outputs as follows. We count the number of times each
particular transition or emission is used in the set of train-
ing inputs. Let these be Akl and Ek(b). Then the maximum
likelihood estimators for akl and ek(b) are given by:

akl =
Akl∑
l′

Akl′

and

ek(b) =
Ek(b)∑
b′

Ek(b′)

The learning algorithm is described in Table 1.

Table 1. Learning algorithm.
1. Create an initial random set P of HMMs

2. Do until number simulation steps N is met

(a) For each HMM M ∈ P do

i. Select a subset S ⊆ P of HMMs at random
ii. Compute the output sequence M ′(x) = o for each

M ′ ∈ S and x ∈ X using the Viterbi algorithm
iii. Compute the maximum likelihood estimators akl and

ek(b) from the consensus outputs of S.
iv. Update the parameters A and E of M to be the maximum

likelihood estimators.

End for

End do

Table 2. Training set.

label species samples
BAS Barred antshrike 12
DAB Dusky antbird 12
GAS Great antshrike 12
MAT Mexican antthrush 12

2.3 Data set
The samples used in the experiments presented here were

provided to us by Martin L. Cody. The dataset consists of
songs from four different antbird species that are abundant at
the Montes Azules Biosphere Reserve in Chiapas, Mexico.
They are listed on Table 2.

The preparation of data proceeded as follows. The songs
were segmented using the Raven bird song analysis program
[3]. Syllables were identified by small discontinuities in the
corresponding spectrogram. Using this procedure, we ob-
tained a collection a syllable samples as listed in Table 3.
For each sample, we obtained a series of temporal and spec-
tral measurements using Raven. These parameters were ex-
tracted from the sound signal using the short-time Fourier
transform (STFT) and selected according to previous studies
on bird species classification [3] [6]. These measurements
are described in Table 4.

A normalization process was applied to this data because
the selected measurements span different orders of magni-
tude. Such differences might result from how close the sub-
ject is to the recorder, for example. Using the mean and the
standard deviation of each measurement, we obtained a col-
lection of feature vectors described as z-scores.

The collection of feature vectors describing syllables were
classified using a simple competitive learning neural network
[5]. Once the syllables have been categorized we proceeded
to represent the original songs as strings of symbols using
the label from each syllable category. Table 5 shows the
string representation of a subset of the songs obtained us-
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Table 3. Syllable samples

label samples
BAS 216
DAB 129
GAS 339
MAT 117

Table 4. Selected features of syllables

parameter description
Low frequency The lower frequency bound of the syllable
High frequency The upper frequency bound of the syllable
Delta time The duration of the syllable
Max amplitude The upper amplitude bound of the syllable
Max power The upper power bound of the syllable

ing a two-unit competitive learning network, with learning
constant η = 0.1 and epochs = 1000.

Similarly, table 6 shows the string representation of a sub-
set of the songs obtained using a four-unit competitive learn-
ing network, with learning constant η = 0.1 and epochs =
1000.

3 EXPERIMENT AND RESULTS
Multiple simulations were conducted using different com-

binations of parameter values presented in table 7. The fol-
lowing were the major results:

1. HMMs produced a reasonably good categorization per-
formance (∼ 82%) of the training sets.

2. Acceptable numbers of training steps (∼ 100) were re-
quired for the collection of HMMs to converge to con-
sistent classifications.

3. The description of bird songs using fewer distinct sylla-
bles and HMMs with fewer states produced better clas-

Table 5. Strings representation of the training set using 2
syllables

label string
BAS1 BBBBBBBBBAAAABAAAAAABA
BAS2 BBBBAAAAAAAAAAAAAAAAAAAAA
BAS3 BBBBABBBBAAAAABAAAAABABBA
DAB1 BAAAAAAAAABBBBB
DAB2 BAAAAAABBBBBBB
DAB3 BBAAAAAAAABBBB
GAS1 BBBBBBBAAABBABBBABAAAAAABAAABBABBAAAAAB
GAS2 BBAAAAAABABBABBAAAAAAAAAAAAAAAAAAAAB
GAS3 BBBBBBBBBBABBAAAAAAAAAAAAAAAAAAAAAAAAB
MAT1 BBBBBBBBBBBBB
MAT2 AAAAAAAAAABBB
MAT3 AAAAAAAAAAAAA

Table 6. Strings representation of the training set using 4
syllables

label string
BAS1 DDDAAAAAABAAAAAAAAABAC
BAS2 DDDAAAAAAAABBBABBBBBBBAAB
BAS3 DDDAAAAAAAAABAAAAAAAAAAAC
DAB1 DBBBBBBBBBDDDDD
DAB2 DBBBBBBDDDDDDD
DAB3 DDBBBBBBBBDDDD
GAS1 DDDDCCCDCCCCCCCCCCCCBCCACBAACCAAAABACCD
GAS2 DDACCCCCCBCCCCBCCCCCACAACABBABBBBAAD
GAS3 DDDCDCCCCCCBCCCCBBBCCBCCAABAABABBBBBCD
MAT1 DDDDDDDDDDDDD
MAT2 DBBBBBBDDDBBB
MAT3 BBBBBBBBBBBBB

Table 7. Parameters for simulations

parameter value
Simulation steps 100–200
|P | 128–512
|S| 8–32
|Q| 8–16
|Σ| 2-16

sification performance.

To calculate the classification performance we obtain the
consensus output sequence from all of the samples in the
same category. Then we compute the pairwise similarity of
each output sequence produced for each sample in the cat-
egory with respect to the consensus output sequence of the
category.

Table 8 shows the accuracy of classification obtained for
the two-syllable experiment using HMMs with 8 states and
100 simulation steps.

Similarly, Table 9 shows the accuracy in classification ob-
tained for the four-syllable experiment using HMMs with 16
states and 200 simulation steps.

4 CONCLUSION
Despite its preliminary character, the results shown here

seem to indicate that acceptable categorization of bird species
can emerge using self-organizing HMMs. The results also
show that the accuracy in classification depends on the
number of syllables describing the bird songs. This sug-

Table 8. Simulation results

species classification
BAS 82%
DAB 86%
GAS 81%
MAT 77%
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Table 9. Simulation results

species classification
BAS 79%
DAB 82%
GAS 78%
MAT 75%

gests the existence of a number that is optimum for accu-
rate species classification. Moreover, categorization requires
minimum human intervention in contrast with supervised
learning methods. In general, experimental results showed
that there is an advantage for simulations in which hidden
Markov models posses fewer states.

We think the proposed method could be extended in sev-
eral ways. For instance, the most relevant in practice would
be to use this model for event detection and to identify the
species that are sharing the acoustic space, in both the tem-
poral and spectral spaces. This capabilities would enable the
technology of sensor arrays to explore important questions in
ecology regarding both the inter- and intra- species interac-
tion of birds.

It should be noted that the proposed model has only been
tested in a simple simulated setting. We will test the proposed
model in real settings in the near future. We believe that
self-organizing HMMs hold much promise to contribute for
the development of fully automated sensor arrays for habitat
monitoring applications.
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