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Abstract: This paper discusses stability of an adaptive type neural network direct controller in the viewpoint of its folding 
behavior.  First, I discuss the stability for the nonlinear plant and the nonlinear neural network.  This discussion confirms 
that we can include the plant Jacobian problem into the tuning problem of the parameter determining the neural network 
learning speed.  This is because it was confirmed that the direct controller has the folding behavior and the sign of the 
slope of a part of plant inverse characteristics learned by the neural network dose not change.  This means that the sign of 
the plant Jacobian dose not change.  Next, I assume input output relations of the neural network are linear and present the 
detail of the stability condition.  This assumption may not be practical, but it is helpful for understanding of the 
relationship between the plant Jacobian and the parameter tuning. 
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I. INTRODUCTION 
 
    Many studies have been undertaken in order to 
apply both the flexibility and the learning capability of 
neural networks to control systems.  We seem to believe 
that a neural network learns an inverse dynamic of a target 
plant in a servo level neural network controller application.  
This is because the target plant dynamics can be cancelled 
by this learned inverse dynamics if the neural network can 
learn it.  On the other hand, a practical plant generally has 
a nonlinear dynamics and it is mathematically expressed a 
many-to-one function whose more than one input values 
correspond to one output value.  There is no inverse 
function of such function.  For this problem, we 
confirmed that the neural network has the folding behavior 
in the neural network direct controller through the use of 
the sine wave as a nonlinear plant.[1]  This behavior is 
that the neural network learns only one branch (; a part of 
the inverse characteristics and it can be expressed as a 
one-to-one function mathematically) of the inverse 
characteristics of the target plant in order to obtain whole 
plant output.  When the neural network realizes such 
input output mapping, the whole inverse characteristics of 
the target plant seem to be folded into one branch of the 
inverse characteristics.  This behavior means that we can 
realize an ideal control system if the neural network can 
learn only one inverse branch of the plant.  Other 
remarkable point was also confirmed that the sign of the 
slope of one branch dose not change.[1]  That is, the sign 
of the plant Jacobian (; the derivative of the output with 
regard to the input) of the branch learned by the neural 
network of the direct controller dose not change.  This 
fact seems to realize the learning of the neural network 
direct controller without the direct object plant modeling.  
The complex structures of the forward and inverse 

modeling, the feedback error learning and so on are not 
necessary with regard to realize the neural network 
learning.  However, our previous papers pointed out the 
possibility of this realization and we did not show the 
discussion about its stability. 
      Thus, this paper discusses the stability of the 
adaptive type neural network direct controller[2] in the 
viewpoint of the folding behavior.  In the second chapter, 
I discuss the stability for the nonlinear plant and the 
nonlinear neural network.  This discussion confirms that 
we can include the plant Jacobian problem into the tuning 
probelm of the parameter determining the neural network 
learning speed.  This is because the sign of the slope of 
the learned branch dose not change and the sign of the 
plant Jacobian learned by the neural network of the direct 
controller dose not change.[1]  In the third chapter, I 
assume the neural network is linear.  This assumption 
may not be practical, but it is helpful for understanding of 
the relationship between the plant Jacobian and the 
parameter tuning.  This is because this assumption can 
realize the more details of the stability analysis. 
 
II. LEARNING OF NEURAL NETWORK DIRECT 
  CONTROLLER AND FOLDING BEHAVIOR 
 
     Figure 1 shows a structure of the neural network 
direct controller.  As shown in fig.1, the neural network 
output is the plant input and the learning of the neural 
network performs so as to minimize the error between the 
plant output and the desired value (teaching signal).  If 
the learning of the direct controller performs well (equals 
that the plant output becomes to be the desired value), the 
neural network of the direct controller obtains a part of the 
inverse characteristics of the plant dynamics as mentioned 
in my previous paper.[1] 
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     This paper selects the steepest descent method as the 
neural network learning rule.  It is shown in the following 
equation. 
 

  dW

dt
= – !

"J

"W                               (1) 
 
Where W is the weight of the neural network, η is the 
parameter determining the learning speed and J is the cost 
function.  This cost function is the square error between 
the plant output Y and the desired value Yd. 
 

  dJ

dt
=
!J

!W

dW

dt                                (2) 
 
If the above equation (2) is satisfied, we can derive the 
following equation from eq.(1) 
 

  dJ

dt
= – ! (

"J

"W
)
2

                              (3) 
 
As shown in the above equation, since we can select that 
the parameter η is the positive value, the cost function J 
decreases as time progress.  That is, the learning rule of 
the neural network is stable and the plant output becomes 
to be close to the desired value as time progress because 
the cost function J is the square error between the plant 
output and the desired value. 
 

 Neural network Plant

UYd Y

+ -

 
 

Fig.1 Scheme of neural network direct controller. 
 
     If we use an analog hardware as the neural network, 
we may realize the learning rule of eq.(2).  However, 
most of the neural network controllers use the computer 
software since it is useful.  In this case, the neural 
network learning rule is expressed as the following 
equation. 
 

  W(k+1) = W(k – d) – !
0

"J(k)

"W(k – d)               (4) 
 
Where k is the sampling number and d is the dead time of 
the plant.  Since this paper selects the adaptive type 
neural network, the weight of the neural network is 
changed at every several sampling time as shown in eq.(4).  
The cost function J(k) is defined as follows; 
 

  J(k)=
1

2
!2(k)

                                 (5) 
!(k)=Yd(k)-Y(k)                                (6) 
 
Where Y is the plant output, Yd is the desired value and ε 
is the output error between them.  Here, when the 
following eqs.(7) and (8) are assumed, we can obtain 
eq.(9) from eq.(4). 
 

  dW(k–d)

dt
! w(k+1)– w(k–d)

                  (7) 
  dJ(k)

dt
!

"J(k)

"W(k–d)

dW(k–d)

dt                     (8) 
  dJ(k)

dt
! – "0 (

#J(k)

#W(k–d)
)

2

                      (9) 
 
As shown here, although we select the discrete time 
control system, if the eqs.(7) and (8) are satisfied, the plant 
output becomes to be close to the desired value as learning 
progress.   
      However, it is difficult to realize the learning rule 
eq.(4) in the direct controller when the plant characteristics 
is unknown.  It is because (∂J(k)/∂W(k-d)) can not be 
calculated.  As the practical solution, we can use the 
following equation in the replace of eq.(4). 
 

  W(k+1) = W(k – d) + ! "(k)
#U(k–d)

#W(k – d)           (10) 
 
Where U is the plant input.  It equals the neural network 
output in the neural network direct controller as shown in 
fig.1.   We must tune the parameter η in the replace of η0 
in eq.(4) and we can calculate eq.(10).  It is because  
(∂U(k-d)/∂W(k-d)) can be determined by the neural 
network structure and this is known.  The meaning of 
eq.(10) is explained in the following eq.(11) if eq.(12) is 
satisfied. 
 

  ! = !
0
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"U(k – d)                           (11) 
  !J(k)

!W(k – d)
=
!J(k)

!Y(k)

!Y(k)

!U(k – d)
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  !J(k)
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                              (13) 
 
From the similar way of eqs.(7)(8) and (10), we can obtain 
the following equation. 
 

  dJ(k)

dt
= ! "(k)

#J(k)

#W(k–d)

#U(k–d)

#W(k–d)               (14) 
 
From eqs(11)-(14), the following equation is obtained. 
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           (15) 
 
Where (∂Y(k)/∂U(k-d)) is the derivative of the plant 
output Y with regard to the plant input U and it is called  
the plant Jacobian.  As shown in eq.(15),  
if η(∂Y(k)/∂U(k-d)) is positive, the cost function J 
decreases as time progress and the plant output becomes to 
be close to the desired value.  That is, the neural network 
learning is stable and it performs well, 
       If the plant is linear system, it is well known that 
the plant Jacobian (∂Y(k)/∂U(k-d) is constant.  It is not 
difficult to tune the parameter η for the linear plant.  
However, if the plant is nonlinear, the plant Jacobian is not 
constant and it may be changed from negative to positive 
or from positive to negative in the neural network learning 
progress.  Thus, the learning rule eq.(10) seems to be not 
practical because it seems to be difficult to tune the 
parameter η.  However, it was confirmed that the neural 
network direct controller has the folding behavior.[1]  It 
is not necessary for neural network learning of the direct 
controller to obtain whole plant inverse characteristics.  If 
the neural network obtains only one branch (a part of the 
plant inverse characteristics and it is mathematically 
expressed as one to one function), the plant output matches 
with the desired value for whole region.  The plant 
Jacobian in eq.(15) is referred to the branch which the 
neural network must learn.  This is because the plant is 
controlled within this branch.   The sign of its slope is 
not changed because the branch is expressed as one to one 
function and it monotonously increases or decreases.  
From eq.(15), the choice of the parameter η is positive or 
negative to stabilize the neural network learning.  It is not 
so difficult to tune the parameter η. 
       As shown in eq.(15), the plant Jacobian effect can 
be included into the tuning of the parameter η and we can 
use the learning rule eq.(10).  However, the assumptions 
eq.(7) and (8) seem to be strained.  In particular, eq.(7) 
may not be satisfied around the weights which the neural 
network converge to.  In the next section, I discuss the 
stability condition of the adaptive type neural network 
direct controller.  This discussion uses the assumption 
that the input output relation of the neural network is linear.  
It is because it is difficult for the nonlinear neural network 
to analyze its stability condition, but the discussion of the 
next session is helpful to understand the plant Jacobian 
effect and the meaning of the learning rule eq.(10).  
 
III. STABILITY CONDISION OF ADAPTIVE TYPE 
   NEURAL NETWORK DIRECT CONTROLLER 
 
     Previous section shows the discussion of the 
stability of the neural network direct controller and its 
folding behavior, but the assumption of eqs.(7) & (8) 
seems to be strained. In order to discuss its stability 

condition, this section selects a three layer neural network 
whose neurons have a liner input output relation. This 
linear assumption may not be practical, but it is helpful for 
understanding of the neural network stability condition.  
The neural network is expressed as the following equation 
by use of this liner assumption. 
 

  U(k) = !T(k) W(k) I(k)                          (16) 
 
Where ω is the weight vector between the hidden layer and 
the output layer, W is the weight matrix between the input 
layer and the hidden layer and I is the input vector of the 
neural network. 
   The following nonlinear plant is selected in this paper. 
 

  Y(k) = f(Y(k-d),•••,Y(k-d–n),U(k–d),•••,U(k–d–m))   (17) 
 
Where n & m are the plant orders and f is the nonlinear 
function which expresses the plant nonlinearity. The 
learning rule is derived as the following equations based 
on eqs.(10)-(13) and the linear assumption. 
 

  W(k+1) = W(k–d) + !"(k)#(k–d)IT(k–d)             (18) 
  !(k+1) = !(k–d) + "#(k)W(k–d)I(k–d)              (19) 

 
Here, we define the parameter error vector ζ as the 
following equation. 
 

  !T(k) = "
0

T W0 – "T(k) W(k)                    (20) 
 
Where ω0 and W0 are the weight vector and the weight 
matrix when the neural network is finished to converge. 
      The following discussion is described about the 
local stability when the neural network almost converges 
to the weight vector ω0 and matrix W0.  From this 
assumption, the output error is expressed as follows; 
 

  
!(k+d) "

#Y(k+d)

#U(k)
$U(k)

                       (21) 
 
Where ΔU(k) is the difference between the present plant 
input and the plant input when the neural network is 
finished to converge.  This ΔU(k) is sufficiently small 
because of the local stability.  We assume the follows; 
 

  !U(k) " (#
0 – #(k))T (W0 – W(k)) I(k)  

      ! ("
0

T W0 – "
0

T W(k) – "T(k) W0 + "T(k) W(k)) I(k)  
                                            (22) 
 
From the local stability, we assume that both ω0 and W0 are 
almost equal to ω and W for the second and third terms of 
eq.(22).  From eqs.(21)(22) and this assumption, we can 
obtain the following equation. 
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!(k+d) =

"Y(k+d)

"U(k)
#T(k)I(k)

                    (23) 
 
From the local stability, the output error ε is sufficiently 
small and ε2 is almost 0.  From this assumption and 
eqs.(18)(19) & (23), we obtain the following equation. 
 

  !T(k+1) W(k+1) 
  = !T(k–d) W(k–d) + "

#Y(k)

#U(k–d)
$T(k–d) %(k–d)

     (24) 
  !(k) = I(k) "T(k)"(k) IT(k) + I(k) IT(k) WT(k) W(k)    (25) 

 
From eqs.(20) and (24), the following equation is derived. 
 

  !T(k+1) = !T(k–d)(E – "
#Y(k)

#U(k–d)
$(k–d))

          (26) 
 
Where E is the identity matrix.  When φ(k)=ζT(k) ζ (k) is 
selected as a candidate of the Lyapunov function, we can 
obtain the following equation. 
 
   !"= "(k+1) – "(k–d)  
     = !T(k–d)Q!(k–d)                           (27) 

  
Q = – 2! (

"Y(k)

"U(k–d)
) #(k–d) + !2(

"Y(k)

"U(k–d)
)

2

#(k–d)#T(k–d)

 
                                            (28) 
 
Since ξ defined by eq.(25) is the real symmetric matrix 
whose eigen values are not negative, there is a real 
orthogonal matrix V so as to ξ=V-1βV where β is a 
diagonal matrix whose diagonal elements are the eigen 
values of ξ.  From eqs.(27) and (28), the following 
equation is derived. 
 

  
Q = V–1(!2(

"Y(k)

"U(k–d)
)

2

#2 – 2 !
"Y(k)

"U(k–d)
#)V

        (29) 
 
When λi is defined by the eigen value of β, λi is not 
negative and the rank of β is 1.  That is, the positive λi is 
1 and this is the maximum eigen value λ0 which is not 0.  
From eqs.(27)-(29), when the following equation is 
satisfied, Δϕ is not positive and the neural network 
controller is stable. 
 

  0 ! "(
#Y(k)

#U(k–d)
)$

0
! 2

                          (30) 
 
As shown in eq.(30), the plant Jacobian (∂Y(k)/∂U(k-d)) 
is related to the stable condition.  Its sign is important 
because the parameter η must be changed if its sign is 
changed in order to stabilize the neural network direct 
controller.  However, my previous paper confirmed that 
the neural network of the direct controller has the folding 

behavior.  It learns only one branch of the plant inverse in 
order to express whole plant characteristic.  This branch 
is expressed as one to one function mathematically.  The 
sign of the plant Jacobian is not changed.  This is because 
the branch learned by the neural network monotonously 
increases or decreases.  From eq.(30), it is not necessary 
to change the sign of the parameter η because λ0 in eq.(30) 
is positive.  
     There is a maximum of absolute value of the plant 
Jacobian (∂Y(k)/∂U(k-d)) if the branches learned by the 
neural network are continuous.  If neither this maximum 
nor λ0 are not 0, we obtain the following stability 
condition. 
 

  
0 ! " !

2

P#
0    (0 < P) ,  

  2

P!
0

"# " 0

  (0> P)  
  P =

!Y(k)

!U(k–d) Max                            (31) 
 
where P is the maximum of absolute value of the plant 
Jacobian (∂Y(k)/∂U(k-d)).  As shown in eq.(31), if we 
tune the parameter η so as to satisfy eq.(31), we can 
stabilize the neural network direct controller.   This is 
because the maximum eigen value λ0 is positive and it can 
be calculated within the neural network learning. 
 
IV. CONCLUSION 
 
       This paper discusses the stability of the adaptive 
type neural network direct controller in the viewpoint of 
the folding behavior.  First, I discuss the stability for the 
nonlinear plant and the nonlinear neural network.  This 
discussion confirms that we can include the plant Jacobian 
problem into the tuning problem of the parameter 
determining the neural network learning speed.  This is 
because the neural network direct controller has the 
folding behavior.  However, the used assumption may be 
strained around the converged neural network weights.  
Thus, I assume the input output relation of the neural 
network is linear and present the more detail of the 
stability condition of the adaptive type neural network 
controller. 
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