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Abstract: In this study, the optimal processing parameters of polypropylene foam thermoforming are obtained by the use of an 
artificial neural network. Data from tests carried out on a lab-scale thermoforming machine were used to train an artificial 
neural network, which serves as an inverse model of the process. The inverse model has the desired product dimensions as 
inputs and the corresponding processing parameters as outputs. The structure, together with the training methods, of the 
artificial neural network is also investigated. The feasibility of the proposed method is demonstrated by experimental 
manufacturing of cups with optimal geometry derived from the finite element method. Except the dimension deviation at one 
location, which amounts to 17.14 %, deviations of the other locations are all below 3.5 %. 
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1 INTRODUCTION 

Thermoforming has become one of the most 
important polymer processing methods [1]. However, 
persistent problems in the selection of processing 
parameters due to the complex interconnected nature of the 
involved thermal, chemical, friction and visco-elastic 
phenomena have confounded the overall success of the 
process. One of the most serious problems is the lack of an 
adequate method to derive processing parameters with 
which prescribed product geometry can be obtained. The 
parameter-selection problem is of great concern, because it 
is usually linked with high cost and long start-up time. In 
practice, the trial-and-error method is relied upon with 
repeated processing runs to achieve required product 
geometry. This restriction renders uneconomical a small-
batch type manufacturing with accurate product shape. 

In this work, an effort was made to develop a technique 
based on ANN to find a set of thermoforming parameters 
that will produce foamed plastic products in a prescribed 
geometry. The technique inverts the relation between 
processing parameters and product dimensions. The inverse 
model has the desired product dimensions as inputs and the 
corresponding processing parameters as outputs. The 
effects of the design factors of the ANNs on the 
performance of mapping between product dimensions and 
processing parameters have also been investigated. Finally, 
experimental manufacturing of cups was used to test the 
adequacy of the method developed. 

 

2 ARTIFICIAL NEURAL NETWORKS AND 
THE BACKPROPAGATION LEARNING RULE 

ANN (artificial neural network) is one of the proven 

general-purpose architectures that are able to generate a 
nonlinear mapping between two sets of data. In this paper, 
the inverse model is treated as a mapping between the 
desired product geometry and the corresponding processing 
parameters, where the former are inputs and the latter are 
outputs. 

The network architecture used for the inverse model 
problem is the multilayered feedforward neural network 
(MFNN)[2]. Figure 1 shows an MFNN with two hidden 
layers, each layer has a synaptic weight matrix Wi, i = 1, 2, 
3, defining the connections between the previous layer and 
the next layer [3-9]. In Figure 1, the connection between 
the input patterns and the first hidden layer is defined by 

the weight matrix  W1 = [wij
(1)]∈ inNN ×ℜ 1

, where N1 is 
the number of neurons in the first hidden layer and Nin is 
the number of inputs. The connection between the two 
hidden layers is defined by the weight matrix W2 = 

[wij
(2)]∈ 12 NN ×ℜ , where N2 is the number of neurons in 

the second hidden layer. The last weight matrix W3 = 

[wij
(3)]∈ 23 NN ×ℜ defines the connection between output 

patterns and the second hidden layer, where N3 is the 
dimension of output patterns. Given the network input 

vector 1Ninu ×ℜ∈ , the output of the first hidden layer 
1N

1
1X ×ℜ∈ , which is the input to the second hidden layer, 

can be written as 
X1 = f1(W1．u + B1) 

where f1 ( ) is the nonlinear activation function at each 

neuron in the first hidden layer and B1 
11 ×ℜ∈ N
 is the 

threshold or bias vector of the same layer. The output of the 

second hidden layer 
1

2
2 ×ℜ∈ NX can be written as 

X2 = f2 (W2．X1 + B2) 
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where f2 ( ) is the nonlinear activation function and B2 is 
the bias vector of the second hidden layer. The output of 
the last layer, which is the response of the network 

1N
3

3XY ×ℜ∈= , can be written as 

Y = X3 = f3(W3．X2 + B3) 
where f3 ( ) is the activation function and B3 is the bias 
vector of the output layer.  
In the following descriptions, the hidden layers of the ANN 
under study are composed of neurons with a hyperbolic 
tangent sigmoid activation function defined as: 

 

where the value of α is usually set to be 1. Furthermore, the 
activation function of the output layer is the linear function. 
That is, 

Y = W3．X2 + B3 

The backpropagation learning algorithm is the most 
widely used training process for MFNN with differentiable 
activation functions today. The algorithm is based on the 
steepest descent gradient principle aiming at the 
minimization of deviation between the desired network 
output and the actual output, defined as the scalar positive 
function   

3
2

1

( )
N

i i
i

E d y
=

= −∑  

where di represents the desired network output and yi is the 
actual output of the MLP corresponding to an input pattern. 
To emphasize relative deviation, the value of E is further 
tailored to be in a root of mean squared error form in the 
subsequent discussion: 

3
2

13

1
( )

N

RMS i i
i

E d y
N =

= −∑                     (1) 

On using the backpropagation algorithm, also called 
the generalized delta rule, we need to find the local error or 
delta, δj

(s) , recursively first:  

1 1
( ) ( 1) ( 1) ( ) ( 1) ( )

1 1

[ ] ( )
s sN N

s s s s s s
j h hj s ji i j

h i

w g w x bδ δ
+ −

+ + −

= =

= ⋅ ⋅ ⋅ +∑ ∑

                                 (2) 

where s = 1, 2 designates the appropriate network layer, 
gs( )  represents the first derivation of the activation 
function fs( ) in the s-th layer. And δj(3) for the output layer 
is evaluated as 

)()(
2

1

)2()3(
3

)3(
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N

h
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=

δ  

The learning rule for the weight matrix and bias vector is 
then given by 

)1()()()( )()1( −⋅⋅+=+ s
i

s
j

s
ji

s
ji xkwkw δµ     (3) 
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j
s

j
s
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where k denotes time index, s = 1, 2, 3 designates the 

appropriate network layer. Furthermore, µ in Eqs 3 and 4 is 
the corresponding learning rate parameter, which is an 
important design factor of an MFNN [2]. 

 

 
 

Figure 1. Architecture of a multilayered feedforward 
neural network (MFNN) with two hidden layers [2]. 

 
 

3 RESULTS AND DISCUSSION 

With the network topology and learning rate paramete
r being set at optimal values obtained above, Figure 2
shows the convergence history of the RMS prediction error 
values of the various network outputs. The average training 
time of a typical run was 12 seconds when executed using a 
2.0 GHz Pentium 4 Personal Computer equipped with 1 GB 
RAM.  

We can see that the average RMS error values are all below 
0.2. Furthermore, the RMS errors of E and F, that is, the 
dropping velocity of the assisting plug and the heat transfer 
coefficient of the assisting plug, can be perfectly reduced 
below 0.01. We have that the network can fit to the 35 
experimental data sets with RMS prediction errors well 
below 0.02. 
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Using the training data to assess the network 
performance can lead to over-fitting. The generalization 
properties of a neural network cannot be based on the 
training data alone. Untrained data sets must be used 
instead to evaluate its generalization capability. We 
randomly selected 5 experimental data sets, which were not 
used in the training, as test data sets.  

To test the effectiveness of the trained ANN and study 
fundamental problems associated with inverse model of the 
thermo forming process, evaluation processes were 
conducted. The desired cup geometry, which serves as 
inputs to the ANN, is designed with ANSYS using the 
Finite Element Method (FEM).  

The desired product dimensions were normalized and 
sent to the trained MFNN to generate outputs. The 
processing parameters corresponding to the optimal 
thickness distribution are: A = 187 oC, B = 91 mm, C = 
0.3042 sec, D = 0.02 MPa, E = 222 mm/s, and F = 0.23 
W/m·oK (plastic). 

Ten cups were manufactured and the average 
thicknesses of the six sites were obtained. These results are 
shown graphically in Figure 3. Except the deviation at point 
3, which amounts to 17.14 %, dimension deviations of the 
other points are all below 3.5 % [2]. 

 
 

 
Figure 2. Convergence history of the RMS error 

values of the training data sets [2]. 
 

 
Figure 3. Experimental thickness versus desired 

thickness [2]. 

4 CONCLUSION 

In this study, inverse model of thermoforming, which is 
composed of an artificial neural network, has been carried 
out. Taking thermoforming of the polypropylene foam cups 
as a specific case, we show in this paper that inverse 
modeling of a process by a neural network to derive 
processing parameters is both feasible and practical. This 
conclusion is justified by experimental results. In addition, 
inverse model can alleviate the prolonged trial processes 
required to derive a set of processing parameters 
corresponding to specified product geometry. 
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