
Optimizing the Thermoforming of Polypropylene Foam by an Artificial
Neural Network

Shih-Jung Liu*, Ting-Ting Wen, and Yau-Zen Chang

Department of Mechanical Engineering
Chang Gung University, Tao-Yuan 333, Taiwan

(Tel: 886-3-2118166, Fax: 886-3-2118558)

*shihjung@mail.cgu.edu.tw

Abstract: In this study, the optimal processing parameters of polypropylene foam thermoforming are obtained by the use of an
artificial neural network. Data from tests carried out on a lab-scale thermoforming machine were used to train an artificial
neural network, which serves as an inverse model of the process. The inverse model has the desired product dimensions as
inputs and the corresponding processing parameters as outputs. The structure, together with the training methods, of the
artificial neural network is also investigated. The feasibility of the proposed method is demonstrated by experimental
manufacturing of cups with optimal geometry derived from the finite element method. Except the dimension deviation at one
location, which amounts to 17.14 %, deviations of the other locations are all below 3.5 %.

Keywords: Polypropylene Foam, Thermoforming, Artificial Neural Network, Optimal Processing Parameters.

1 INTRODUCTION

Thermoforming has become one of the most
important polymer processing methods [1]. However,
persistent problems in the selection of processing
parameters due to the complex interconnected nature of the
involved thermal, chemical, friction and visco-elastic
phenomena have confounded the overall success of the
process. One of the most serious problems is the lack of an
adequate method to derive processing parameters with
which prescribed product geometry can be obtained. The
parameter-selection problem is of great concern, because it
is usually linked with high cost and long start-up time. In
practice, the trial-and-error method is relied upon with
repeated processing runs to achieve required product
geometry. This restriction renders uneconomical a small-
batch type manufacturing with accurate product shape.

In this work, an effort was made to develop a technique
based on ANN to find a set of thermoforming parameters
that will produce foamed plastic products in a prescribed
geometry. The technique inverts the relation between
processing parameters and product dimensions. The inverse
model has the desired product dimensions as inputs and the
corresponding processing parameters as outputs. The
effects of the design factors of the ANNs on the
performance of mapping between product dimensions and
processing parameters have also been investigated. Finally,
experimental manufacturing of cups was used to test the
adequacy of the method developed.

2 ARTIFICIAL NEURAL NETWORKS AND
THE BACKPROPAGATION LEARNING RULE

ANN (artificial neural network) is one of the proven

general-purpose architectures that are able to generate a
nonlinear mapping between two sets of data. In this paper,
the inverse model is treated as a mapping between the
desired product geometry and the corresponding processing
parameters, where the former are inputs and the latter are
outputs.

The network architecture used for the inverse model
problem is the multilayered feedforward neural network
(MFNN)[2]. Figure 1 shows an MFNN with two hidden
layers, each layer has a synaptic weight matrix Wi, i = 1, 2,
3, defining the connections between the previous layer and
the next layer [3-9]. In Figure 1, the connection between
the input patterns and the first hidden layer is defined by

the weight matrix W1 = [wij
(1)]∈ inNN ×ℜ 1

, where N1 is
the number of neurons in the first hidden layer and Nin is
the number of inputs. The connection between the two
hidden layers is defined by the weight matrix W2 =

[wij
(2)]∈ 12 NN ×ℜ , where N2 is the number of neurons in

the second hidden layer. The last weight matrix W3 =

[wij
(3)]∈ 23 NN ×ℜ defines the connection between output

patterns and the second hidden layer, where N3 is the
dimension of output patterns. Given the network input

vector 1Ninu ×ℜ∈ , the output of the first hidden layer
1N

1
1X ×ℜ∈ , which is the input to the second hidden layer,

can be written as
X1 = f1(W1．u + B1)

where f1 () is the nonlinear activation function at each

neuron in the first hidden layer and B1
11 ×ℜ∈ N
 is the

threshold or bias vector of the same layer. The output of the

second hidden layer
1

2
2 ×ℜ∈ NX can be written as

X2 = f2 (W2．X1 + B2)

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12),
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 1002

where f2 () is the nonlinear activation function and B2 is
the bias vector of the second hidden layer. The output of
the last layer, which is the response of the network

1N
3

3XY ×ℜ∈= , can be written as

Y = X3 = f3(W3．X2 + B3)
where f3 () is the activation function and B3 is the bias
vector of the output layer.
In the following descriptions, the hidden layers of the ANN
under study are composed of neurons with a hyperbolic
tangent sigmoid activation function defined as:

where the value of α is usually set to be 1. Furthermore, the
activation function of the output layer is the linear function.
That is,

Y = W3．X2 + B3

The backpropagation learning algorithm is the most
widely used training process for MFNN with differentiable
activation functions today. The algorithm is based on the
steepest descent gradient principle aiming at the
minimization of deviation between the desired network
output and the actual output, defined as the scalar positive
function

3
2

1

()
N

i i
i

E d y
=

= −∑

where di represents the desired network output and yi is the
actual output of the MLP corresponding to an input pattern.
To emphasize relative deviation, the value of E is further
tailored to be in a root of mean squared error form in the
subsequent discussion:

3
2

13

1
()

N

RMS i i
i

E d y
N =

= −∑ (1)

On using the backpropagation algorithm, also called
the generalized delta rule, we need to find the local error or
delta, δj

(s) , recursively first:

1 1
() (1) (1) () (1) ()

1 1

[] ()
s sN N

s s s s s s
j h hj s ji i j

h i

w g w x bδ δ
+ −

+ + −

= =

= ⋅ ⋅ ⋅ +∑ ∑

 (2)

where s = 1, 2 designates the appropriate network layer,
gs() represents the first derivation of the activation
function fs() in the s-th layer. And δj(3) for the output layer
is evaluated as

)()(
2

1

)2()3(
3

)3(
j

N

h
hjhjjj bxwgyd +⋅−= ∑

=

δ

The learning rule for the weight matrix and bias vector is
then given by

)1()()()()()1(−⋅⋅+=+ s
i

s
j

s
ji

s
ji xkwkw δµ (3)

)()()()()1(s

j
s

j
s

j kbkb δµ ⋅+=+ (4)

where k denotes time index, s = 1, 2, 3 designates the

appropriate network layer. Furthermore, µ in Eqs 3 and 4 is
the corresponding learning rate parameter, which is an
important design factor of an MFNN [2].

Figure 1. Architecture of a multilayered feedforward
neural network (MFNN) with two hidden layers [2].

3 RESULTS AND DISCUSSION

With the network topology and learning rate paramete
r being set at optimal values obtained above, Figure 2
shows the convergence history of the RMS prediction error
values of the various network outputs. The average training
time of a typical run was 12 seconds when executed using a
2.0 GHz Pentium 4 Personal Computer equipped with 1 GB
RAM.

We can see that the average RMS error values are all below
0.2. Furthermore, the RMS errors of E and F, that is, the
dropping velocity of the assisting plug and the heat transfer
coefficient of the assisting plug, can be perfectly reduced
below 0.01. We have that the network can fit to the 35
experimental data sets with RMS prediction errors well
below 0.02.

2

2

1
() tanh()

1

v v v

v v v

e e e
y f v v

e e e

α α α

α α αα
− −

− −

− −= = = =
+ +

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12),
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 1003

Using the training data to assess the network
performance can lead to over-fitting. The generalization
properties of a neural network cannot be based on the
training data alone. Untrained data sets must be used
instead to evaluate its generalization capability. We
randomly selected 5 experimental data sets, which were not
used in the training, as test data sets.

To test the effectiveness of the trained ANN and study
fundamental problems associated with inverse model of the
thermo forming process, evaluation processes were
conducted. The desired cup geometry, which serves as
inputs to the ANN, is designed with ANSYS using the
Finite Element Method (FEM).

The desired product dimensions were normalized and
sent to the trained MFNN to generate outputs. The
processing parameters corresponding to the optimal
thickness distribution are: A = 187 oC, B = 91 mm, C =
0.3042 sec, D = 0.02 MPa, E = 222 mm/s, and F = 0.23
W/m·oK (plastic).

Ten cups were manufactured and the average
thicknesses of the six sites were obtained. These results are
shown graphically in Figure 3. Except the deviation at point
3, which amounts to 17.14 %, dimension deviations of the
other points are all below 3.5 % [2].

Figure 2. Convergence history of the RMS error

values of the training data sets [2].

Figure 3. Experimental thickness versus desired

thickness [2].

4 CONCLUSION

In this study, inverse model of thermoforming, which is
composed of an artificial neural network, has been carried
out. Taking thermoforming of the polypropylene foam cups
as a specific case, we show in this paper that inverse
modeling of a process by a neural network to derive
processing parameters is both feasible and practical. This
conclusion is justified by experimental results. In addition,
inverse model can alleviate the prolonged trial processes
required to derive a set of processing parameters
corresponding to specified product geometry.

REFERENCES

1. J. L. Throne, Thermoforming, Hanser Publishers,
New York (1986).

2. Y.Z. Chang, T.T. Wen, S.J. Liu, Polym. Eng. Sci. 45,
375 (2005)

3. F. M. Ham and I. Kostanic, Principles of
Neurocomputing for Science and Engineering,
McGraw-Hill (2001).

4. M. M. Gupta, L. Jin, and N. Homma, Static and
Dynamic Neural Networks, John Wiley & Sons, Inc
(2003).

5. V. Maniezzo, IEEE Trans. on Neural Networks, 51,
39 (1994).

6. D. E. Moriarty and R. Miikkulainen, Evol. Comput.,
5, 373 (1997).

7. B. Yang, X.-H. Su, and Y.-D. Wang, the First Int.Conf.
on Mach. Learn. and Cybernet. Conf. Proceed., 64
(2002).

8. J. A. Nelder and R. Mead, Comput. J., 7, 308 (1965).
9. W. H. Press, Numerical Recipes in C++: The Art of

Scientific Computing, 2nd ed., Cambridge Univ.
Press, New York (2002).

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12),
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 1004

