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Abstract: We describe an approach for cooperative multi-robot localization based on Monte Carlo Localization. In our 

approach, each of the robots maintains its own clustering based MCL algorithm, and communicates with each other whenever 

it detects another robot. We develop a new information exchange mechanism, which makes use of the information extracted 

from the clustering component, to synchronize the beliefs of detected robots. By avoiding unnecessary information exchange 

whenever detection occurs through belief comparison, the proposed approach solves the delayed integration problem which 

further improves the effectiveness and efficiency of multi-robot localization. This approach has been tested in both real and 

simulated environments. Compared with single robot localization, the experimental results demonstrate that proposed approach 

notably improves the performance, especially when the environments are highly symmetric. 
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I.  INTRODUCTION 

Mobile robot localization, the process of determining the 

position and orientation (pose) of a robot within its 

operating environment from sensor reading, is a 

prerequisite for subsequent high level navigation tasks. It 

has been considered as one of the fundamental problems in 

mobile robotics [6]. The most widely studied localization 

problems are: Local localization (position tracking), which 

is to compensate incremental errors in a robot’s motion 

under the assumption that the initial position is known as 

prior, and the more challenge Global localization, in which 

the robots are required to estimate their pose by local and 

incomplete observed information under the condition of 

uncertain initial position [7]. 

During the past two decades, most existing work has 

focused on single robot localization, such as Grid-based 

approaches [1], Monte Carlo Localization [5, 11], and 

multi-hypothesis approaches [2]. These approaches have 

been applied to many different applications in solving 

localization problem and achieve remarkable successes.  

However, more and more researchers are interested in 

using multiple robots to improve efficiency and robustness. 

In this paper, we propose an efficient probabilistic approach 

for cooperative multi-robot localization in indoor 

environment. Our approach is based on Monte Carlo 

Localization that has been applied with great practical 

success to single robot localization. In our approach, the 

robots, capable of sensing and exchanging information one 

with another, localize themselves by maintaining their own 

beliefs which are the proposed clustering based MCL 

algorithm. Our new developed information exchange 

mechanism is employed to synchronize each robot’s belief 

whenever one robot detects another in order to speed up the 

localization process with possible higher accuracy. We 

utilize the information extracted from the clustering 

component of the proposed approach which analyzes the 

distribution of the whole particle set to quantify robot’s 

belief and transfers information across different robots if 

necessary. We always compare the beliefs of both detected 

robots before synchronizing their poses’ estimate to control 

information integration. By doing so, we can prevent the 

localization process from suffering the problem of delayed 

integration, which means to avoid unnecessary information 

exchange. In addition, robots themselves are implicitly used 

as landmarks rather than using only external landmarks, as 

in other works. 

In section II we briefly review previous cooperative 

localization approaches, the MCL algorithm, and the 

clustering method. Section III describes details of our 

proposed method. Section IV presents the experimental 

results. Finally, section V provides the conclusions and 

future work. 

II. RELATED WORKS 

Many robotic applications require that robots work 

cooperatively in order to perform a certain task [9]. 

Knowing their global positions is the first step in multi-

robot systems. 

One early cooperative localization technique with 

multiple robots was proposed by Kurazume and Nagate [8] 

ans is known as “portable beacons”. The basic underlying 

idea is that each robot repeats move-and-stop actions and 

serves as a landmark for the other robots. Only a part of 

entire robots can move in a certain time instant and this 

dramatically slows down the overall localization speed.  

An EKF-based approach for cooperative multi-robot 

localization was introduced by Roumeliotis [11]. This 

approach allows all robots in a group to move 

simultaneously, and to propagate their state and covariance 

estimates independently by decomposing the centralized 

EKF-based cooperative localization into   communicating 

filters. However, during each update cycle, all robots need 

to communicate with each other and update the covariance 

matrix for all pose estimates. The main drawback is that the 

high cost of computation and communication limits this 
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approach to small robot teams in real-time operation. 

Fox and Burgard [4] have proposed a different 

implementation of cooperative multi-robot localization 

schema which extends the Monte Carlo Localization 

(MCL) algorithm. The sample-based version of Markov 

localization enables localizing mobile robots in any-time 

fashion. Each robot in the system maintains a probability 

distribution describing its own pose estimate. When one 

robot detects another, the “detection model” is used to 

synchronize the individual robot’s beliefs, thereby 

introducing additional probabilistic constrains which ties 

one robot’s belief to another robot’s belief to reduce the 

uncertainty. This method suffers from the problem of 

delayed information exchange, which means the 

information exchange between two detected robots cannot 

ensure it is always benefit the localization process. 

Our proposed approach is a clustering based MCL 

algorithm for cooperative multi-robot localization. The 

details of MCL and the related clustering algorithm will be 

given in this section. We first review some basic concepts 

in mobile robot localization. The state of a robot is defined 

as the collection of all aspects of the robot and its 

environment. The state at time   is denote as   . The pose 

of a robot is denoted        , where   and   represent a 

two-dimensional coordinate and   represents orientation of 

the robot. The notion of belief is used to represent the 

robot’s internal knowledge about the state of the 

environment [10]. The expression of belief over state    is 

        =               . It is a posterior probability over 

states conditioned on all the past motion data      and all 

the past measurement data     . Localization algorithms 

based on probabilistic methods have two different 

components to process these two kinds of data [13]: 

measurement model, denoted as         , and motion 

model, denoted as              . 

A. Monte Carlo Localization  

 

Monte Carlo Localization (MCL) is one of the latest and 

commonly used probabilistic approaches for single robot 

localization. MCL is an implementation of Bayes Filter, 

which represents uncertainty by maintaining a set of 

weighted samples that are randomly drawn from the 

probability density [19]. 

MCL is a recursive algorithm, and Fig. 1 [19] shows one 

iteration. The inputs of the MCL algorithm are particle set 

     from previous iteration, control data   , measurement 

data   , and the given map   of the environment. Line 1 

initializes the particle set     and   . And then for each 

particle, line 3 do sampling from the motion model, line 4 

calculates the importance weight of that particle from the 

measurement model. Line 7 to line 10 is the resampling 

phase. The algorithm draws with replacement   particles 

from the temporary set    . The probability of drawing each 

particle is given by its importance weight. Finally, the 

posterior particle set   , which contains the particles that 

with higher importance weights is returned. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 1. The Monte Carlo Localization (MCL) algorithm [19]. 

 

Note that, if MCL finishes successfully, most particles are 

concentrated on a small region which represents the 

location of robot, although there is not such a stop condition 

in the MCL algorithm.  

B. Clustering Algorithm BSAS 

Clustering is the assignment of a set of observations 

(particles) into clusters so that observations in the same 

cluster are similar to each other. Two important parts in 

almost all clustering algorithms are to select a proximity 

measure, which measures the dissimilarity between 

particles or clusters, and the representative of a cluster, 

which highly depends on the shape of a cluster. As in MCL 

all poses of particles are represented by a two dimensional 

coordinate system, it’s more effective for us to choose the 

Euclidean distance measure 

                  
          

  as our proximity 

measure. A Compact cluster is what one mostly encounters 

in MCL, thus the mean point of a cluster is chosen as 

representative, denoted as        
 

 
   ,   is the 

number of particles contained in that cluster. 

We choose one of the most efficient clustering methods 

called Basic Sequential Algorithm Scheme (BSAS) shown 

in Fig. 2. to be used in the proposed method, because most 

probabilistic robotics algorithms need real time 

performance. 

The BSAS algorithm takes the whole particle set 

          that need to be clustered and the user defined 

threshold of dissimilarity   as inputs. Line 1 initialize the 

first cluster, which contains the first particle    presented 

to the algorithm. From line 2 to line 9 it is a large for loop 

sequentially going through all the remaining particles. The 

dissimilarity measures between current particle and every 

existing cluster is calculated in order to find a minimum 

one in line 3. From line 4 to line 8, if the minimum measure 

calculated in line 3 is greater than  , a new cluster that 

containing current particle will be created. Otherwise, the 

considered particle will be assigned to the existing cluster 

Algorithm MCL (    ,   ,   ,  )                     

 1:    t =  t =                                             

2:   for n =1 to N do                                         

 3:       
   

 = sample_motion_model (  ,     
   

)                 

 4:       
   

 = measurement_model (  ,    
   

,  )                

 5:      t  =  t + <   
   

   
   

>                                

 6:   endfor                                               

 7:   for n = 1 to N do                                               

 8:     draw   with probability    
   

                           

 9:     add   
   

 to  t                                                           

10:   endfor                                                                

11:   Return  t               
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which has the minimum dissimilarity measure to it and 

update its representative of this cluster. 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 2. The Basic Sequential Algorithm Scheme (BSAS) [12]. 

 

III. COOPERATIVE CLUSTERING BASED 

MCL ALGORITHM  

Motivated by both the MCL and the BSAS algorithms 

above, one novel method incorporating clustering into the 

conventional MCL is proposed for cooperative multi-robot 

localization in order to further improve the localization 

performance, as outlined in Fig. 3. 

A. MCL+BSAS part 

Our proposed approach consists of three parts. In the first 

part, each robot maintains its own belief by executing the 

MCL and the BSAS algorithms. The conventional MCL is 

used and the generated particle set is then supplied to the 

BSAS algorithm for clustering (the clustering component). 

By doing so, the proposed approach could monitor the 

localization process of each robot in real time by making 

use of the cluster information  obtained from BSAS, such 

as the number of clusters, denoted as   , the locations of 

these clusters, denoted as              , the possibility 

of each cluster represent the true location of the robot. If the 

percentage     of particles in the cluster which contains 

the largest number of particles exceeds a predefined 

threshold  , then the considered robot is assumed to have 

been  localized, and return the pose of representative of the 

cluster to be used as a landmark for the other robots. If 

     is less than the predefined threshold   , then it 

indicates the robot fails to localize itself at the moment. The 

ability that recognizing whether a robot has been l localized 

or not by itself significantly improves its robustness and 

autonomy.  

B. Detection part 

The core idea of multi-robot localization is to let the 

robot benefit from information collected by others, 

therefore the interactions between robots is essential to the 

proposed approach. Robot can perceive other robots in the 

environment, and then exchange their information with 

each other if possible to reduce their uncertainty about their 

external environment.  In part 2, the proposed approach 

manages the behavior of both detected robots in a 

principled way in order to dealing with the delayed 

information exchange problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. The Clustering based MCL for cooperative multi-robot localization 

 

The behavior is mainly to determine whether to allow an 

information exchange and the direction of information 

exchange, with the help of one important Boolean type 

status variable for each robot described in Fig. 4. Initially, 

each status variable is set to be “False”. During the entire 

localization process, once a robot has detected any 

landmark, its status variable will be set to “True”, and once 

a robot has exchanged its belief with another robot, the 

status variable will be set to “False”. If one robot has 

succeeded in its localization, its Boolean value will always 

stay in “True” 

We manage the detection between robots in two 

scenarios: (1) in the first scenario, both status variables of 

two detected robots are false. This scenario includes two 

situations: (a) both robots have not detected any landmarks 

yet. Here we can assume that the internal beliefs of both 

robots about their poses relative to the environment are very 

Algorithm BSAS (           ):                                        

 1:                                                                      

 2:   for i =2 to N do                                                         

 3:     find                                                                      

 4:           if             then                                           

 5:                       ，                                             

 6:        else                                                            

 7:                   , update its representative                                                 

 8:         endif                                                            

 9:    endfor                                                                        

Algorithm: Clustering based MCL for multi-
robot localizatoin                          
  Part 1:                                                                           

 Initially, each robot executes its own MCL+BSAS to 

monitor its own pose estimate and cluster information.                                                                  

If the degree of certainty      exceeds a predefined 

threshold  , the considering robot will stop to indicate it 

has been localized and return its location to be used as 

landmark for other robots.                                                                                                                                        

  Part 2:                                                                             

When one robot detects another:                                                        

(a) If the values of both detected robots’ status 

variables are false, there is no information 

exchange;                                                              

(b) Else there is one robot’s status variable is true or 

both of them are true, then do belief comparison:                                                     

If they are not with the same degree of certainty, 

do information exchange which use the one 

with higher certainty to help the other one to 

refine its pose estimate;                                                                  

   Else there is no information exchange;                                                                                                                                                                                                                                                                                                                                                                                                                                                      
  Part 3:                                                                          

 Process of information exchange:                                                       

(a) After determining the exchange direction, a 
predefined distance threshold   is used to help 
in refining process:                                                          

  Those clusters of the robot with lower 
certainty, whoever is within the range of 
predefined distance threshold   to any 
clusters of the robot with higher certainty, 
will be kept;                                                            

(b) Return a new set of clusters which will focus on 
the more possible locations of the robot;                                                                        

(c) Uniformly resample N total particles within the 
newly returned set of clusters;                               
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blurry. 

 
Fig. 4. The status variable diagram. 

We skip the information exchanging at the moment since 

the blurry knowledge will not benefit the localization 

process. (b) Both robots have already exchanged their 

beliefs at last encounter or detection, and no landmarks 

have been observed by both robots yet at current detection. 

Without a newly observation of landmarks the level of 

uncertainty will most likely stay the same level or even 

worse. Normally there is no need to exchange information 

again. Therefore our approach does not allow the 

information exchanging under this kind of situations. (2) In 

the second scenario, there is at least one status variable 

value is true or both are true. Since perceiving a landmark 

helps robot gather more information about its environment 

so it could help in its pose estimate, we consider it as 

necessary to exchange their beliefs to refine the pose 

estimates. The direction of refining belief is to use the 

robot’s belief which is with higher certainty about where it 

is to refine the other with lower centainty about its pose and 

hence it requires a comparison of the level of certainties 

about their locations. In order to quantify the belief, our 

approach makes use of the variable      extracted from 

the clustering component. Through comparing of      of 

both robots we can find which one is with higher certainty 

about its position. If they are with the same level of 

certainty, then we consider it as no need to exchange their 

information, however, this situation rarely happened in 

experiments.  

Through this strategy our approach makes sure that the 

information exchange always benefits the localization 

process. 

C. Information exchange part 

As mentioned above, each particle or cluster represents 

one possible position of robot. If two robots detect each 

other, their estimated poses which are particles or the 

representatives of clusters should be within a certain 

distance. Our proposed approach makes use of this 

geometric relationship to build a mechanism for 

information exchange. Fig. 5 shows the pseudo code of the 

process of information exchange. It takes both sets of 

clusters of robot A and B, and the predefined threshold 

distance   as inputs. The direction of information exchange 

has been determined by part 2, thus, we have two cases: (1) 

robot A refines robot B from line 1 to 10; (2) vice versa 

robot B refines robot A. In case 1, line 2 initializes a new 

set of cluster   
 . From line 3 to line 8, it is a for loop going 

through all clusters of robot B. Line 4 calculates the 

distance between the current cluster of robot B and all 

clusters of robot A to find the minimum one, if the 

minimum distance is smaller than the threshold  , then add 

it to the set of cluster   
 . Line 10 uniformly resamples the 

total number of particles within the newly returned set of 

cluster  
 . The process of case 2 is the same as case 1 but 

with different direction of information exchange. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. The process of information exchange. 

IV. EXPERIMENTAL RESULT 

Our approach is tested on both real and simulated robots. 

In both situations, we firstly test the performance of single 

mobile robot localization, and then apply our approach to 

multi-robot localization. Three important data: the 

localization time  (s), the successful rate  , and the error 

distance  , will be collected in every experiment. Finally 

we compare these characteristic results of multi-robot 

localization with single robot localization, and demonstrate 

improvement.  

A. Experiments Using Real Robots 

 

 
 
Fig. 6. Two iRobot Create using in our experiments. The left Create is 

with black label, while the right one is regular Create. 

 

Fig. 6 shows the two real robots iRobot Create using in 

our experiments. The experiments are conducted in four 

different environments shown in Fig. 7. The two Creates 

started from different locations. The paths of  both Create 

is set to turn left 120   when it bumps to the wall or 

obstacle, otherwise keep going forward. The total number 

of particles used to represent the belief of Create is set to 

5000. The dissimilarity measure threshold   is set to 17cm 

Information exchange 

(                         ):                                        

  1:  Case 1:  Robot A refines Robot B                                                     

  2:      
                                                             

  3:    for i =1 to n do                                                         

  4:      find                                                                   

  5:        if              then                                         

  6:              add    to   
                                                

  7:        endif                                                                 

  8:    endfor                                                             

  9:    return   
                                                              

10:    uniformly resample particles within   
                                             

11: Case 2: Robot B refines Robot A                                                                                                                            

12:    vice versa 
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which is the radius of Create. Therefore the shape of each 

cluster will be the same size as Create. The threshold   

used in the process of information exchange is set to be 

60cm since the setup of detection is determined by the 

range of infrared signals emitted by Virtual wall sensor. 
Threshold   is set to 70%, which means if the number of 

particles contained in the largest cluster is equal or larger 

than 70% of total, the Create will stop to indicate it has 

been localized. We repeat each experiment 50 times and 

compare the performance to MCL+BSAS for single robot 

which ignores robot detections. 

 

 
                    (a)                                              

(b) 

 
                    (c)                                              

(d)           
Fig. 7. Four environments of real robot experiments. (a) A rectangle 
field with the shape of 300cm 150cm; (b) Two rectangle fields, the 
left one is 150cm 150cm, the right one is 150cm 100cm; (c) A 
rectangle field of 300cm 150cm, and an obstacle of 31.5cm 19.5cm 
placed in the field; (d) Two rectangle fields, the left one is 
150cm 150cm, the right one is 150cm 100cm, and an obstacle of 
31.5cm 19.5cm placed in the field. 

TABLE I. 
COMPARE MULTI-ROBOT LOCALIZATION WITH SINGLE ROBOT 

LOCALIZATION USING CREATE  

Environment 
 

  (s ) 

Time 

saving 

(%) 

  

Increasing   

of 

successful 

rate (%) 

Symmetric 

Single 

robot 
230.88 

37.6% 

42% 

30% 
Multi 

robot 
144.04 72% 

Asymmetric 

Single 

robot 
81.6 

25.6% 

84% 

2% 
Multi 

robot 
60.73 86% 

Symmetric 

with obstacle 

Single 

robot 
92.62 

24.9% 

80% 

4% 
Multi 

robot 
69.54 84% 

Asymmetric 

with obstacle 

Single 

robot 
74.38 

30.4% 

90% 

1% 
Multi 

robot 
51.76 91% 

 

The results shown in Table I demonstrate that compare to 

single robot localization, our proposed approach applied in 

multi-robot localization not only reduces the time for 

localization, but also increase the successful rate for each 

robot. We can see without the help of detection of other 

Create and exchange information between them the time for 

single robot localization in symmetric environment is 

230.88s, and the successful rate is only 42%. With the help 

of another Create, the results show significant 

improvement, which reduce the time for localization by 

37.6% to 144.04s in average of two Create, and increase the 

successful rate by 30% to 72%. The large improvement of 

time saving also shows in the other three environments. 

However our proposed approach can only increase the 

successful rates by relatively small ranges in the other three 

environments. This is because these three environments are 

very distinctive which means even single Create can 

achieve high successful rate.  

B. Simulation Experiments  

The simulation experiments are also implemented in four 

different environments shown in Fig. 8. Same as in the real 

robots experiments, both multi-robot localization using our 

proposed approach and single robot localization have been 

tested under these four environments. The total number of 

particles is also 5000. The threshold   is set to 120 pixels 

which is the same setup of detection with experiments using 

Create. The dissimilarity threshold   is set to be 60 pixels, 

and threshold   is also set to 70%. We repeat each 

experiment 50 times. 

 

 

     
                    (a)                                          

(b) 

     
                    (c)                                          

(d) 
Fig. 8. Four environments of simulation experiments. (a) A rectangle 

field of 600 300pixel; (b) Two rectangle fields, the left one is 
300 300pixel, the right one is 300 200 pixel; (c) A rectangle field of 
600 300pixel, and a gray rectangle obstacle of 50 50pixel placed in 
the field; (d) Two rectangle fields, the left one is 300 300 pixel, the 
right one is 300 200pixel, and a gray rectangle obstacle of 50 50pixel 
placed in the field.  

Table II summarizes that our proposed approach can 

significantly shorten the time for localization in both 

symmetric environment and featured environments 

compare with single robot localization. As to the successful 

rate, it depends on the type of environments. The 

improvement is obviously while localizing in symmetric 
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environments. 

TABLE II 
COMPARE MULTI-ROBOT LOCALIZATION WITH SINGLE ROBOT 

LOCALIZATION IN SIMULATION EXPEIMENTS 

Environment 
 

  (s ) 

Time 

saving 

(%) 

    

Increasing      

of successful   

rate (%) 

Symmetric 

Single 

robot 
368.02 

70.6% 

44% 

 32% 
Multi 

robot 
109.56 76% 

Asymmetric 

Single 

robot 
31.4 

28.3% 

86% 

 3% 
Multi 

robot 
22.485 89% 

Symmetric 

with obstacle 

Single 

robot 
33.24 

27% 

84% 

 4% 
Multi 

robot 
24.25 88% 

Asymmetric 

with obstacle 

Single 

robot 
28.74 

31.6% 

92% 

 1% 
Multi 

robot 
19.65 93% 

 

C. Study of parameter   

As we mentioned the value of   determines the stop 

point of each robot’s localization which is specified by the 

minimum percentage of total particles contained in the 

largest cluster. In this group of experiments, we increase the 

value of   into 80%, while other parameters stay the same 

values with previous simulation experiments, to see how it 

can affect the performance.  

 

TABLE III 
COMPARISON OF MULTI-ROBOT LOCALIZATION UNDER TWO 

VALUES OF    

Environment 
Multi 

robot 

        

(s ) 

Time 

increasing 

(%) 

  

Increasing   

of 

successful 

rate (%) 

Symmetric 
η=70% 109.56 

18% 
76% 

2% 
η=80% 129.41 78% 

Asymmetric 
η=70% 22.485 

14.5% 
89% 

3% 
η=80% 25.75 92% 

Symmetric 

with obstacle 

η=70% 24.25 
16.9% 

88% 
4% 

η=80% 28.36 92% 

Asymmetric 

with obstacle 

η=70% 19.65 
8.5% 

93% 
1% 

η=80% 21.33 94% 

 

The results show that a large value of    will take more 

time to finish the localization process because it requires 

more information about its external environment to reduce 

the uncertainty of position estimation. In the mean time, the 

fact that more particles fall in the largest cluster indicates 

more likely the pose of representative of this cluster 

represents the true pose of the robot, which means the 

successful rate or effectiveness will be increased. However, 

there is a trade-off between efficiency and effectiveness 

controlled by  . If   is too big, it will take significantly 

longer time to localize itself while achieving a relatively 

small increase of successful rate. On the other hand, if   is 

too small, despite the rapid reduction of localization time, 

without guaranteeing the successful rate it will not make 

any sense to the localization.  

V. Conclusion and Future Works 

This paper presents a clustering based MCL algorithm 

for cooperative multi-robot localization, in which all robots 

moved simultaneously. Each robot maintains its own 

clustering based MCL algorithm, and communicates with 

each other whenever it detects another robot. The newly 

developed mechanism for the communication aims to 

achieve improve the efficiency and effectiveness of 

localization process. In addition, the characteristic of 

without fusion center and the instant communication 

between two detected robots allow our proposed approach 

scaling to large group of robots. Compare with single robot 

localization, experimental results performed in both real 

and simulated environments demonstrate the improvements 

in both efficiency and effectiveness of our proposed 

approach applied in cooperative multi-robot localization. 

In the future work, we want to design a more robust way 

of movement based on already gathered information rather 

than the simple static path setting. We also want to test our 

approach on a large group of robots. 
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