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Abstract: Engineers and researchers are paying more attention to reinforcement learning (RL) as a key technique for realizing
adaptive and autonomous decentralized systems. In general, however, it is not easy to put RL into practical use. Our approach
mainly deals with the problem of designing state and action spaces. Previously, an adaptive state space construction method
which is called a “state space filter” and an adaptive action space construction method which is called “switching RL,” have been
proposed after the other space has been fixed.
In this paper, we reconstitute these two construction methods as one method by treating the former method and the latter method
as a combined method for mimicking an infant’s perceptual and motor developments. Then the proposed method is based on
introducing and referring to “entropy.” In addition, a computational experiment was conducted using a so-called “robot navigation
problem” with three-dimentional continuous state space and two-dimensional continuous action space. As a result, the validity
of the proposed method has been confirmed.
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1 INTRODUCTION

Engineers and researchers are paying more attention to
reinforcement learning (RL)[1] as a key technique in devel-
oping autonomous systems. In general, however, it is not
easy to put RL to practical use. Such issues as satisfying
the requirements of learning speed, resolving the perceptual
aliasing problem, and designing reasonable state and action
spaces for an agent, etc., must be resolved. Our approach
mainly deals with the problem of designing state and action
spaces. By designing suitable state and action spaces adap-
tively, it can be expected that the other two problems will
be resolved simultaneously. Here, the problem of designing
state and action spaces involves the following two require-
ments: (i) to keep the characteristics of the original search
space as much as possible in order to seek strategies that lie
close to the optimal, and (ii) to reduce the search space as
much as possible in order to expedite the learning process.
In general, these requirements are in conflict.

Recently an adaptive state space construction method
which is called a “state space filter[3],” and an adaptive ac-
tion space construction method which is called a “switching
learning system[4],” have been proposed after the other space
has been fixed. Here, we reconstitute these two construc-
tion methods as one method by treating them as a combined
method for mimicking an infant’s perceptual and motor de-
velopments The proposed method is to construct state and

action spaces adaptively by introducing and referring to the
“entropy” as an index of both necessity for the division of
the state space in the state and sufficiency for the number
of learning opportunities in the state. In addition, a compu-
tational experiment was conducted using a so-called “robot
navigation problem” with three-dimentional continuous state
space and two-dimensional continuous action space.

2 TYPICAL RL METHODS

2.1 Q-learning
Q-learning works by calculating the quality of a state-

action combination, namely the Q-value, that gives the ex-
pected utility of performing a given action in a given state.
By performing an action a ∈ AQ, where AQ ⊂ A is the set
of available actions in Q-learning and A is the action space
of the agent, the agent can move from state to state. Each
state provides the agent with a reward r. The goal of agent is
to maximize its total reward.

The Q-value is updated according to the following for-
mula, when the agent is provided with the reward:

Q(s(t-1), a(t-1)) ← Q(s(t-1), a(t-1))

+αQ{r(t-1) + γ max
b∈AQ

Q(s(t), b)−Q(s(t-1), a(t-1))} (1)

where Q(s(t-1), a(t-1)) is the Q-value for the state and the
action at the time step t-1, αQ ∈ [0, 1] is the learning rate of
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Q-learning, γ ∈ [0, 1] is the discount factor.

The agent selects an action according to the stochastic
policy π(a|s), which is based on the Q-value. π(a|s) speci-
fies the probabilities of taking each action a in each state s.
Boltzmann selection, which is one of the typical actionselec-
tion methods, is used in this research. Therefore, the policy
π(a|s) is calculated as

π(a|s) =
exp(Q(s, a)/τ)∑

b∈A

exp(Q(s, b)/τ)
(2)

where τ is a positive parameter labeled temperature.

2.2 Actor-Critic

Actor-critic methods have a separate memory structure in
order to represent the policy explicitly independently of the
value function. The policy structure is called the “actor,”
which selects the actions, and the estimated value function
is called the “critic,” which criticizes the actions made by
the actor. The critic is a state-value function. After each ac-
tion selection, the critic evaluates the new state to determine
whether things have gone better or worse than expected. That
evaluation is TD-error:

δ(t-1) = r(t-1) + γV (s(t)) − V (s(t-1)) (3)

where V (s) is the state value.

Then, V (s(t-1)) is updated according to Eq. 4 in the critic
based on this δ(t-1). In parallel, it is updated for the stochas-
tic policy π(a|s), in the actor.

V (s(t-1))← V (s(t-1)) + αCδ(t-1) (4)

where αC ∈ [0, 1] is the learning rate of the critic.

It is typical for the normal distribution, shown in Eq. 5,
to be used as the stochastic policy in the actor, when actor-
critic is applied to a continuous action space[2].

In this case, both the mean µ(s) and the standard error of
the mean σ(s) about the normal distribution are calculated
using TD-error δ(t-1) in the actor, as in Eqs. 6 and 7.

π(a|s) =
1

σ(s)
√

2π
exp(

−(a− µ(s))2

2σ(s)2
) (5)

µ(s(t-1))← µ(s(t-1))+αµδ(t-1)(a(t-1)−µ(s(t-1))) (6)

σ(s(t-1)) ← σ(s(t-1))

+ασδ(t-1)((a(t-1)− µ(s(t-1)))2 − σ(s(t-1))2) (7)

where αµ ∈ [0, 1], ασ ∈ [0, 1] are the learning rate of the
mean and the standard error of the mean, respectively. Here,
if Eq. 7 is used directly, the standard error could be 0 or
a negative value. Therefore it is necessary when setting the
standard error to be creative and to specify the range, etc.
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Fig. 1. Proposed development RL model

3 DEVELOPING RL

3.1 Outline of a Computational Model
In this section, we propose developing an RL model to

mimic the processes of an infant’s perceptual and motor de-
velopments. The proposed model is constructed by “state
space filter[3]” to mimic the process of perceptual develop-
ment in which perceptual differentiation progresses as the in-
fant becomes older and more experienced, and a “switching
learning system[4]” to mimic the process of motor develop-
ment in which gross motor skills develop before fine motor
skills, as shown in Fig. 1.

This model mimics the process of perceptual development
by differentiating the state space gradually from the undif-
ferentiated state space. In parallel, this model also mim-
ics the process of motor development by switching discrete
action space learning modules (hereafter called “DA mod-
ules”) from a more coarse-grained DA module to a more
fine-grained DA module, and finally switching to a contin-
uous action space learning module (hereafter called a “CA
module”).

3.2 State and Action Spaces Construction Method

3.2.1 Basic Idea

A variety of methods can be considered to acquire the
state space filter and the switching learning module. Here,
we propose a method based on introducing and referring to
the entropy, which is defined by action selection probability
distributions in a state, and the number of learning opportuni-
ties in the state. It is expected that the proposed method (i) is
able to learn in parallel the state space filter and the switch-
ing learning system, and (ii) does not required specific RL
methods for the learning module.

The entropy of action selection probability distributions
using Boltzmann selection in a state HD(s) is defined by

H(s) = −(1/ log |AD|)
∑

a∈AD

π(a|s) log π(a|s) (8)

where AD is the action space and |AD| is the number of
available actions of the DA module.

The state space filter is adjusted and the learning module
is switched by treating this entropy H(s) as an index of the
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necessity of division for an inner state s and the action space.
In parallel, the learning module is switched by treating this
entropy H(s) as an index of sufficiency for the number of
learning opportunities in the state.

If the entropy does not get smaller despite the learning
module having had a sufficient number of learning opportuni-
ties in the inner state, then the state space filter is adjusted by
dividing the inner state, and the learning module is switched
to a more fine-grained one. In contrast, if the entropy gets
small regardless of the number of learning opportunities, the
learning module is switched to the CA module because the
number of learning opportunities is sufficient.

In this article, Q-learning and actor-critic are applied to
the DA module and the CA module, respectively. The learn-
ing module is switched in the order of Q-learning with an
action space divided evenly into n, 2n, · · · , 2(N-1)n, and fi-
nally ending with actor-critic, where N is the number of DA
modules.

3.2.2 Adjustment of State Space Filter

If L(s) > θL and H(s) > θH, where L(s) is the number
of learning opportunities in s, θL is a threshold value of the
number of learning opportunities, θH is a threshold value of
the entropy, and θL is set at a sufficiently large number, then
the state space filter is adjusted by dividing the range of the
input state mapped to the inner state s into two parts for each
dimension, and mapping each part to a different inner state.
Simultaneously, the learning module is switched. Through
this operation, the size of the inner state space increases by
(2M − 1) after being divided, where M is the number of
dimensions. Also note that the values of the new 2M inner
states are the value of the inner state before it was divided.

In addition, after the learning module is switched to the
CA module, if L(s) > θL, then the state space filter is
adjusted by dividing the inner state so that it is more fine-
grained.

3.2.3 Switching of Learning Module

If H(s) > θH, then the learning module is switched to
the CA module because the number of learning opportuni-
ties is then sufficient. In the procedure to switch controllers,
the result of Q-learning is succeeded by actor-critic and the
following procedure is carried out. 1. The state value of the
critic, V (s), is initialized by

V (s) =
∑

a∈AQ

π(a|s) ·Q(s, a) (9)

2. The normal probability distribution used by the actor is
calculated by

µ(s) = arg max
a∈AQ

Q(s, a), (10)

σ(s) = |AQ(arg max
a∈AQ

Q(s, a))|/6 (11)
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where |AQ(i)| is the range of the action space which repre-
sents action i of Q-learning.

If L(s) > θL and H(s) > θH, then the learning module is
switched to more fine-grained DA module, and finally ends
with the CA module. Simultaneously, the state space filter is
adjusted.

The Q-values of newly added actions ai at this time are
set according to the following formula :

Q(s, i) = max
j∈i−1,i+1

Q(s, j) (12)

where action i − 1 and i + 1 are adjacent to action i. This
formula is set in consideration of a more efficient search as
well as the idea of the optimistic initial values.

4 COMPUTATIONAL EXAMPLE

4.1 Robot Navigation Problem

The proposed method is applied to a so-called “robot nav-
igation problem” navigating a learning agent from a starting
point to a goal area in a continuous state space, as shown in
Fig. 2.

Here, the agent has a circular shape (diameter 50 mm),
and the continuous space is 500 mm×500 mm bounded by
the external wall, with internal walls as shown in black.
The agent can observe the center of its own position and
its own direction: (xA, yA, θA) as the input. The agent has
two wheels and can move in any direction, i.e., it can de-
cide right-and-left wheel rotation rates (mm/step): (ωL ∈
[−15.0, 15.0], ωR ∈ [−15.0, 15.0]) as the output.

The positive reinforcement signal rt = 10 (reward) is
given to the agent only when the center of the agent arrives
in the goal area, and the reinforcement signal is rt = 0 at all
other steps. The period from when the agent is located at the
starting point to when the agent is given a reward, or 100, 000

steps pass away, labeled as 1 episode, is repeated.
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4.2 Comparison with adaptive methods

We have confirmed that a combined method of state space
filter and switching learning system (hereafter called the
“FS” method) shows a better performance than three Q-
learning methods where the number of actions is designed
to be 3, 5, and 9 (hereafter called the “Q3,” “Q5,” and “Q9”
methods, respectively), and an actor-critic method (hereafter
called the “AC” method)with the state space divided evenly
into 5× 5× 8, 10× 10× 16, and 20× 20× 32 in this task.
Fig. 3 shows the wheel rotation rates on each actions of three
Q-learning methods.

In this section, the FS method is compared with three
methods using the switching learning system with the state
space divided evenly into 5 × 5 × 8, 10 × 10 × 16, and
20 × 20 × 32 (hereafter called the “S5,” “S10,” and “S20”
methods, respectively), and three Q-learning methods, the
Q3, Q5, and Q9 methods, using the state space filter (here-
after called the “FQ3,” “FQ5,” and “FQ9,” methods, respec-
tively). Here, an initial state space filter is designed that
divides the state space evenly into 5 × 5 × 8 spaces, and
the switching learning system is constructed by four learning
modules: the “Q3,” “Q5,” “Q9,” and “AC” methods.

All initial Q-values are set at 5.0 as the optimistic initial
values[1] for Q-learning methods and the range of σ(x) is
set at [0.001, 30.0] for the AC method. Here, the maximum
limit of σ(x) is set so that it becomes the size of the action
space: 30.0. Further, the adjustment of the state space filter
is assumed until the third attempt in all inner states because it
is impossible to evaluate sufficiency for division of the state
space.

Computer experiments have been carried out with the pa-
rameters shown in Table 1. Here, θH was set to about 0.359,
the maximal value of the entropy when the highest selection
probability for one action is 0.9, θL was set to a large enough
number.

The average number of steps required to accomplish the
task was observed during learning over 20 simulations with
different methods, as described in Fig. 4. The average size
of the inner state space was observed during learning over 20
simulations with different methods, as described in Fig. 5.

It can be seen from Fig. 4 that, (1) the FS method showed
a worse performance than the FQ3, FQ5, FQ9 and S10 meth-
ods with regard to the learning speed, but a better perfor-
mance than any other methods with regard to the control rule
obtained. (2) the S5 method couldn’t acquire any proper con-
trol rule.

Table 1. Parameters for experiments

Parameter Value Parameter Value
αQ, αC, αµ, ασ 0.1 γ 0.9

θH 0.4 τ 0.1

θL 1000
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It can be seen from Fig. 5 that, (1) the FS method is
smaller than the S20 method, but larger than any other
method except the S20, (2) and is not growing since about
5,000 episode with regard to the size of the inner state space.

Therefore, we have confirmed that the FS method demon-
strates better performances than any other method for the
robot navigation problem.

5 CONCLUSION
In order to design suitable state and action spaces adap-

tively, we have proposed the developing RL model, and the
state and action spaces co-construction method referring to
“entropy.” Then, with a computational experiment we con-
firmed that the combined method of the state space filter
and the switching learning system shows better performances
than any other method for the robot navigation problem with
continuous state and action space.

Our future projects include considering more complicated
problems and real-world problems, etc.
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