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Abstract: In this paper, we propose adjustment method named adaptive learning rate considering learning progress (ALR-P).
The learning rate is a meta parameter that balances trade-off between speed and stability of the learning. Conventionally, designer
had to manually set up a fixed learning rate. However, it is difficult for learning agent to adapt dynamic environment with a fixed
learning rate. ALR-P enables adaptive adjustment of learning rate based on degree of learning progress for every steps. The
degree of learning progress is calculated based on TD-error which is a difference of predicted and observed rewards. Only
TD-error which can be calculated easily and simply is used in the ALR-P, so it can be applied into any types of reinforcement
learning. We confirm effectiveness of ALR-P under a number of dynamic environments through the maze problem in which the
environmental changes occurred.
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1 INTRODUCTION
Recently, there are a lot of researches about robotics us-

ing the reinforcement learning. The reinforcement learning
is a kind of the machine learning which the learning agent
learns and acquires appropriate control rules through the trial
and error [1]. Because the learning agent acquires the con-
trol rules autonomously, for instance, reinforcement learn-
ing is often used for autonomous behavior acquisition of
robots [2][3].

However, if meta parameters of the learning such as learn-
ing rate and the discount rate are inappropriate, the learn-
ing agent cannot behave sufficient performance. In general,
the optimal value does not exist in these meta parameters,
and the designer should adjust them properly according to
the target task and progress of learning. In addition, it is
difficult to learn appropriately under dynamic environment.
When the reinforcement learning is applied to real environ-
mental problem such as robot control, robustness for envi-
ronmental change and noise should be taken into considera-
tion. However, a lot of conventional methods are based on
the premise that environment is static, and do not take envi-
ronmental change into consideration.

In this paper, we focus on learning rate, which is one of the
meta parameters of the reinforcement learning, and propose
the dynamic adjusting method for learning rate.

2 REINFORCEMENT LEARNING
The agent learns control rule by repeating a sequence of

taking an action based on action-value (Q-value) and receiv-
ing a reward. Q-value is predicted value of the total amount
of reward that the agent will receive over the future. The

reward indicates what is good in an immediate sense.
Softmax method is used for action selection in this paper,

which is often used in many reinforcement learning. Softmax
method determines selection probabilities of actions based on
Q-values for the corresponding actions. Selection probability
of action a in state s is shown as Pr(a|s), and is determined
by the following equation.

Pr(a|s) =
exp(Q(s, a)/τ)∑

a′∈A

exp(Q(s, a′)/τ)
, (1)

where A, Q(s, a), and τ show set of actions that the agent
can select in the state s, action-value of the action a in the
state s, and the temperature, respectively. The agent receives
the reward that is the evaluation value of the selected action
from the environment.

The agent dynamically updates the action-value function
based on the received rewards. In this paper, we use Q(λ)-
learning [4] as learning algorithm. In Q(λ)-learning, the
action-value function is updated according to the following
equation.

Q(s, a) ← Q(s, a) + αδ(s, a)e(s, a), (2)

where α, δ(s, a), and e(s, a) show the learning rate, the TD-
error of action a in the state s, and the eligibility trace, re-
spectively. TD-error is calculated by the following equation.

δ = r + γ max
a′∈A′

Q(s′, a′) − Q(s, a), (3)

where r, γ, s′, and A′ show the reward, the discount rate,
the following state after the action a, and set of actions that
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the agent can select in state s′, respectively. Roughly, TD-
error indicates the difference of the predicted value and the
observed value in the state-action pair. Eligibility trace is in-
dex which shows whether the updating of the corresponding
Q-value is proper or not.

3 LEARNING RATE
As shown in the Equation (2), a learning rate is a meta

parameter which determines updating width of action-value
function. Generally, in the case of that the learning rate is
high, the progress of learning is fast although the learning is
not steady. On the other hand, the learning progresses slowly
though the learning is steady in the case of that the learning
rate is low. This means that the learning rate is a parame-
ter that balances trade-off between speed and stability of the
learning.

In this paper, we propose adjustment method named adap-
tive learning rate considering learning progress (ALR-P).
ALR-P adjusts learning rate according to each state (or state-
action pair) for every step. The learning in the early stage or
environment changes should be progressed speedy even if it
can be roughly. because the learning agent have to acquire
more proper action-value function as soon as possible in that
cases. Meanwhile, the learning in the end stage should be
progressed more precisely in order to converge action-value
on optimal value in high accuracy. From the above things,
the learning rate should be adjusted considering the learning
progress; the learning rate should be high to value the learn-
ing speed in a state that the action-value cannot be correctly
estimated, while the one in a state that the action-value can
be correctly estimated should be low to value the stability.

4 ALR-P
ALR-P is a method of adjusting learning rate for every

step considering learning progress, and we newly propose
degree of learning progress in order to realize the adjustment
of learning rate in this method. In this method, we focus on
TD-error which can be thought a difference of predicted and
observed rewards. In a state such as early stages of learning
and environmental change, TD-error is high because predic-
tion of reward is not proper. On the other hand, in a state
such as converging stages of learning, TD-error is low and
approaches 0 because prediction of reward is proper. TD-
error changes for every steps, since the suitable learning can
be not realized if the learning rate is adjusted based on the
each change. Thus, we define the expected value of abso-
lute TD-error as the degree of learning progress, and use the
degree of learning progress to adjust the learning rate. The
degree of learning progress in state s and action a, d(s, a) is
defined by the following equation.

d(s, a) := E[|δ(s, a)|]. (4)

Table 1. Q(λ)-learning applying ALR-P

Initialize Q(s, a) arbitrarily for all s, a

Initialize e(s, a) = 0 and d(s, a) = 0 for all s, a

Repeat (for each episode):
Initialize s, a

Repeat (for each step of episode):
Choose a′ from s′ using policy derived
from Q (e.g., softmax-method)
δ(s, a) ← r(s, a) + γ maxa′ Q(s′, a′) − Q(s, a)

d(s, a) ← d(s, a) + ω[|δ(s, a)| − d(s, a)]

If d(s, a) > dm(s, a):
dm(s, a) ← d(s, a)

α = d(s, a)/dm(s, a)

e(s, a) = 1

For all s, a:
Q(s, a) ← Q(s, a) + αδe(s, a)

e(s, a) ← γλe(s, a)

s ← s′

until s is terminal

However, to calculate the expected value, it is necessary to
save all history of TD-errors in each state-action pair. Since
huge calculation memories and costs are needed for calculat-
ing the expected value, it is approximated by the following
exponential moving average (EMA).

d(s, a) ← d(s, a) + ω[|δ(s, a)| − d(s, a)], (5)

where ω shows updating width. By using the EMA, only the
present TD-error is required to calculate the degree of learn-
ing progress, and the maximum d(s, a) in each state-action
pair is saved as dm(s, a). Using the calculated values from
Equation (5), the learning rate α is adjusted by the following
equation for every steps.

α =
d(s, a)

dm(s, a)
. (6)

Because the learning rate is adjusted based on the degree of
learning progress that each state-action pair has, so the learn-
ing rate can be adjusted according to the each state-action
pair.

In ALR-P, only TD-error is used to calculate the degree
of learning progress. Because the TD-error is a simple value
generally calculated in existing reinforcement learning meth-
ods, it is easy to build ALR-P into almost all reinforcement
learning methods such as Q-learning, Sarsa, Actor-Critic and
so on. Q(λ)-learning applying ALR-P is shown in Table 1.

5 ADAPTIVE LEARNING EXPERIMENT
We conduct comparative experiments with ALR-P and

conventional methods, and verify effectiveness of ALR-P.
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Initial state Goal state
It is possible to move to this cell It is impossible to move to this cell
It is possible to move to this cell with a fixed probability

(0,0) (0,16)

(16,0) (16,16)

(a) Until 100th episode

(0,0) (0,16)

(16,0) (16,16)

(b) From 101st episode

Fig. 1. Maze problem

5.1 Maze problem with environmental changes
We apply ALR-P to the maze problems (see Fig. 1)

in which the environmental changes are occurred. Each
cell shows state, and the coordinates are defined as fol-
lows: left-uppermost is (0, 0), right-uppermost is (0, 16),
left-lowermost is (16, 0), and right-lowermost is (16, 16). An
initial state and a goal state are set to (15, 8) located in lower
part of the maze and (1, 15) located in upper-right part, re-
spectively. The environmental changes in this experiment
is defined as follows; until 100th episode (Fig. 1(b)), agent
can reach goal state by passing through (10, 15), from 101th
episode (Fig. 1(b)), (10, 1) is opened up along the left side,
and (10, 15) changes whether transition is possible or not
with a fixed probability for every steps. And we prepared two
transition settings, Setting A: agent can through the (10, 15)
with a possibility 1/7, and Setting B: agent can through the
cell with a possibility 1/14. In Setting A, the expected value
of sum rewards of right side path which contains (10, 15) is
higher than one of the left side path which contains (10, 1).
On the other hand, in Setting B, the expected values of sum
rewards of both side paths are equivalent.

Comparative methods are RRASP-N [5] and the conven-
tional general methods that learning rate is each fixed to 0.3,
0.5, 0.7, and 0.9. RRASP-N is a method to adjust learning
rate to minimize square TD-errors. Q(λ)-learning is used as
learning algorithm, and softmax method is used as action se-
lection rule. This experiment consists of 300 episodes, and
one episode is that learning agent reaches in goal state or
passes over 100 steps. The agent moves to top, bottom, right,
or left cell, and receives reward that is -1 in a step.

5.2 Experimental results

5.2.1 Transition of sum rewards

The above-mentioned experiments were conducted 100
times for the each method. The results shown in Fig. 2 and
Fig. 3 indicate that the transition of sum rewards in the Set-
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Fig. 2. Transition of sum rewards in the Setting A
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Fig. 3. Transition of sum rewards in the Setting B

ting A and Setting B, respectively. In Setting A, as compar-
ing the results of the conventional methods that learning rate
is each fixed, it was confirmed that advantage by magnitude
relation of learning rate is reversed before and after environ-
mental changes. Also in Setting B, there is no conventional
method that always keeps advantage without differences of
learning rate. Therefore, high learning performance could
not be behaved with a stationary learning rate in this prob-
lem.

From Fig. 2 and Fig. 3, we confirmed that ALR-P behaved
high performance, irrespective of environmental changes.
Before the environmental changes, ALR-P converged learn-
ing fast. After the environmental changes, ALR-P behaved
relatively high performance, and progresses learning without
greatly reducing sum rewards even though immediately after
the environmental changes. On the other hand, RRASP-N
was reduced sum rewards greatly in the both settings.

5.2.2 Transition of learning rate
Fig. 4 shows an example of transition of learning rate in

state-action pair that state is (11, 15) and action is moving
to up. From this figure, we confirm that after environmental
changes learning rate was adjusted high again. Because the
location of state (11, 15) was near the state in which envi-
ronmental changes occurred, it is thought that the state was
profoundly affected by the environmental changes. ALR-P
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Fig. 4. Transition of learn-
ing rate in state-action pair
that state is (11, 15) and ac-
tion is moving to up
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Fig. 5. Transition of learn-
ing rate in state-action pair
that state is (15, 8) and ac-
tion is moving to right

Table 2. Success rate of the task and selection path at success
episode after environmental changes in the Setting A

Learning
rate

Success
rate (%)

Selection rate
of (10, 1) (%)

Selection rate
of (10, 15) (%)

ALR-P 94.25 16.29 83.51
α = 0.3 (fixed) 86.08 8.49 91.51
α = 0.5 (fixed) 82.59 31.62 68.38
α = 0.7 (fixed) 84.43 56.12 43.88
α = 0.9 (fixed) 85.16 67.58 32.42

RRASP-N 83.08 84.38 15.62

Table 3. Success rate of the task and selection path at success
episode after environmental changes in the Setting B

Learning
rate

Success
rate (%)

Selection rate
of (10, 1) (%)

Selection rate
of (10, 15) (%)

ALR-P 83.20 64.67 35.33
α = 0.3 (fixed) 62.51 66.06 33.94
α = 0.5 (fixed) 75.84 86.26 13.74
α = 0.7 (fixed) 81.13 94.99 5.01
α = 0.9 (fixed) 84.45 97.21 2.79

RRASP-N 83.08 96.83 3.17

could promote relearning by adjustment of the learning rate
according to the variation of TD-error.

Fig. 5 shows an example of transition of learning rate in
state-action pair that state is initial state (15, 8) and action is
moving to right. From this figure, we confirm that the learn-
ing rate was not high even though it was after the environ-
mental changes. Because the location of state (15, 8) was far
from the state in which environmental changes occurred, it
is thought that the state is not seriously affected by the en-
vironmental changes. From these results, it was confirmed
that ALR-P could adjust learning rate to appropriate value
on each state.

5.2.3 Success rate of task

The results shown in Table 2 and Table 3 indicate that
success rate of the task and selection path at success episode

after environmental changes in the Setting A and Setting B,
respectively. From these tables, we confirm that success rate
of ALR-P is relatively higher than other methods in the both
settings. The results suggest that ALR-P enables adaptive
learning under dynamic environment and has general versa-
tility.

From the tables, we confirmed that ALR-P showed the
relatively higher selection rate of (10, 15) than other meth-
ods. In Setting B, although expected values of sum rewards
of right and left side paths are equivalent, the right side path
can be the shortest. Therefore, it can be said that ALR-P not
only maintains high success rate, but also searches shorter
path.

When RRASP-N is applied, selection rate of (10, 1) is rel-
atively higher than other methods. Thus, it is thought that
RRASP-N maintains high success rate by selecting left side
path in which environmental change does not occur.

6 CONCLUSION
In this paper, we propose adjustment method named adap-

tive learning rate considering learning progress (ALR-P). We
confirmed that learning agent can adapt to dynamic environ-
ment by using ALR-P through maze problem with environ-
mental changes.

For example, in robotic control of humanoids under real
world, it is necessary to consider risk such as tumble. ALR-
P which can adapt appropriately to dynamic environment is
expected to decrease influence of breakdown caused by abra-
sion of joint, disturbance and so on.
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