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Abstract: This paper presents a new adaptive segmentation of continuous state space based on vector quantization algorithm 

such as LBG (Linde-Buzo-Gray) for high-dimensional continuous state spaces. The objective of adaptive state space 

partitioning is to develop the efficiency of learning reward values with an accumulation of state transition vector (STV) in a 

single-agent environment. We constructed our single-agent model in continuous state and discrete actions spaces using Q-

learning function. Moreover, the study of the resulting state space partition reveals in a Voronoi tessellation. In addition, the 

experimental results show that this proposed method can partition the continuous state space appropriately into Voronoi regions 

according to not only the number of actions, and achieve a good performance of reward based learning tasks compared with 

other approaches such as square partition lattice.  
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1 Introduction 

Reinforcement learning [1] is a type of active learning 

in which the autonomous agent interacts with its initially 

un-known environment, observes the results of its actions, 

and adapts its behavior appropriately. This type of learning 

has been widely studied as a learning method for 

determining the optimal actions. In particular, Q-learning 

[2] is a common reinforcement learning algorithm that is 

being investigated in a variety of applications.  

In this paper, we develop an efficient algorithm for 

partitioning the state space in terms of computation. There 

are multiple ways of partitioning the state space such that 

Voronoi tessellation. Since we consider a single-agent RL 

problem in high-dimensional continuous state space and 

discrete actions, we built two experimental models A and B 

in different environments, and conduct two experiments to 

test the efficiency of reward learning. Our proposed method 

is based on the use of LBG for experimental model B, 

therefore, we use adaptive vector quantization method and 

the quality of a partitioning algorithm could also be 

estimated according to the number of non-overlapping 

regions of the partitioned state space. However, in order to 

increase the performance of learning efficiency, it is 

essential to achieve a good reward on the action space.  

The following is a detailed description of our approach. 

First, a review of reinforcement learning and basic 

algorithm of Q-learning is presented in Section 2. And then, 

the adaptive partitioning of the state space and performance 

of the algorithm is described in detail in Section 3. The 

characteristics of proposed algorithm using vector 

quantization method and the efficiency of reward learning 

are investigated in Section 4. Finally, a conclusion is given 

in Section 5.  

2 Reinforcement learning framework 

In a typical reinforcement learning model, a learning 

agent is connected to achieve a reward or to reach a goal 

through interactions with its environment. In each time step, 

an autonomous agent observes the environmental state and 

makes a decision for a specific action, and selects an action 

in a current state according to a control policy. The control 

policy specifies each admissible action as a function of the 

observed state. At the next time step, a reward is generated 

according to the agent’s environment after executing the 

action, and learns by that reward. It works much like human 

learning, and search for the optimal policy that maximizes 

the total expected reward. This is achieved by estimating 

the action value function, which is the total expected 

reward of taking action at a state.  

2.1 Q-learning algorithm 

Q-learning algorithm due to Watkins [2] is a policy for 

estimating the optimal state-action value function, denoted 

by        , as the value of Q. In general Q-learning, it 

discretizes the state and gives the Q-value that corresponds 

to each state and action pair. Q-value shows the value of 

action, and these Q-values are initialized to small random 

values and gradually change to the optimal values through 

learning process. In the state where the agent observed, the 
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action with the highest Q-value is considered as the optimal 

action, and learns by adding the random action to it. Q-

value is updated by this following equation.  

 

 

In this equation,         is the discount factor,   is 

the learning factor, and   is the reward given in current 

state   ,         is the Q-value of action a
 

in state s
 at time t ,

,
),(max 1 asQ t

a


 
is a maximum Q-value of 

state at time 1t
.
. 

 
3 Experiments A 

We experiment the implementation of the partitioning 

algorithm on 2-dimensional one state input and N-actions 

variables alternatively known as continuous state space and 

discrete actions. In this model A, the position of the agent is 

expressed as a state input, and the reward area is placed at 

the center of the action space as shown in Figure 1, and 

action space and state space completely coincide with each 

other. The aim of the learning agent is to develop an 

optimal control policy, in other words, to achieve a good 

reward within a short period of time.  

We conducted a simple simulation experiment with a 

learning rate of 0.1, discount rate of 0.9 for Q-learning 

algorithm, and a random action rate was initialized to 0.3. A 

continuous action learning time is 20 thousand time for 1 

episode and acts for 50 episodes, and perform 10 trials on 

each episode by changing the different initial seeds of 

random number. Furthermore, we examine the number of 

accumulated rewards by taking the average of each 10 trials 

for each episode. 

3.1 Adaptive state space partitioning method      

(not use LBG method) 

The idea of proposed partitioning algorithm is to group 

together states with similar action. In this way, the agent 

learns a suitable partitioning for a particular task and easily 

partition the state space using a clustering state transition 

vector (STV) or nearest-neighbor method. Our algorithm 

for partitioning is performed on two steps. In the first step, 

we arrange the temporary points into lattice structure and 

collect the STV in regard to reward area that is a distance 

pointing from position of the agent to reward area that are 

described in Figure 2.1 when the agent enters the reward 

area. If the amount of rewards, in other words, the number 

of STV is accumulated 1000 or more, we group together 

STV by continuously taking the same actions, and seek 

those STV groups into representative vectors (RV) 

according to the number of actions are illustrated in Figure 

2.2.  

The accumulated STV with respect to a particular action 

is the sum of the total rewards received by taking the same 

actions. Then, the new Voronoi points are generated at the 

place of those representative vectors in relation to the 

reward area based on the number of actions, after all, we 

remove the temporary points in which the new Voronoi 

points are added. In essence, the continuous state space is 

partitioned into the number of N-actions subspaces as 

Voronoi regions shown on bottom of Figure 3.1.  

In the second stage of partition formation, we collect the 

STV that come from temporary points to new Voronoi 

points of the quantized first-stage output, and group STV 

again which exceeds a threshold value by taking the same 

action. We do not take the STV that come from new 

Voronoi points to new Voronoi points. A threshold value is 

calculated dividing the number of accumulated STV 1000 
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Fig.3.1. First stage of    

   partition formation 

New points 

Temporary points 

Fig.1. Experimental model A  

Fig.2.1. Collecting STV Fig.2.2. Seeking RV 

Fig.3.2. State space partition

      of 7-actions 
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by the number of actions such that 7-actions, 6-actions. 

Figure 3.3 shows the formula quantization in order to make 

the group defined by threshold settings. Hence, the new 

Voronoi points are produced but it does not exactly the 

number of actions as new Voronoi points created in first 

stage formation (Fig.3.2). Moreover, we calculate the 

minimum distance between two new added Voronoi points 

to merge the points into one that are very close when we 

add the new Voronoi points of quantized second-stage 

process. If the distance between two new Voronoi points is 

less than the ratio of a minimum distance, we add the first 

entry Voronoi point. Furthermore, the reward numbers of 

state space partition are compared with square lattice 

partition.  

3.2 Results 

A summary of our experimental result is illustrated in 

Figure 3.4. It shows the comparison of two learning 

methods with the same number of Voronoi points. These 

two learning methods are partitioning of the state space 

using 7-actions on an experimental model A, and the 

regular arrangement of Voronoi points in a lattice structure 

are compared and discussed. As a result, adaptive 

partitioning the state space with N-actions has shown that 

improved performance of reward learning, and it can 

accurately segment the state space as Voronoi tessellation 

with N-actions. However, the new points are not added if 

the ratio of the minimum distance is over 0.5 on the number 

of 3-actions and 4-actions.  

4 LBG vector quantization algorithm  

LBG (Linde-Buzo-Gray) is a typical technique of vector 

quantization algorithm. Modification of adaptive vector 

quantization method was introduced Enhanced LBG 

(Patane & Russo, 2001) [3], Adaptive incremental LBG 

(Shen & Hasegawa, 2006) [4]. Vector quantization method 

assumes that a set of input points is organized into a 

number of groups having approximately the same number 

of points closest to them. Each group is represented by its 

centroid point, as quantum vector (QV) idyllically known 

as representative vector. However, since the quantum 

vectors are not represented very well, we implemented the 

improved vector quantization algorithm as follow:  

1. Collect the input vectors and tentatively place the QVs in 

random position. 

2. Move the QVs in random directions by putting noise at 

the position of QVs.  

3. Then, tentatively group the input vectors that are very 

close from the QVs, and move the QVs to the center 

position of input vectors. 

   We then repeated the above process until the number of 

QVs is -1, and reduce the amount of motion. Figure 4 

describes an example of modified group vector quantization. 

Since the number of QV in clustering problem is not known 

a priori, we determines the number of QV by the index of 

their closest centroid which have smallest measurement 

error rates in group by changing the number of QV, and 

represents using that QV at a given time. 

However, one group was represented with two QVs or 

two groups were represented with one QV. Therefore, we 

move the QVs of smallest measurement error to the 

Fig.3.3. Calculation of threshold values for second

 stage formation 

Fig.3.4. Comparison of learning performance using 

experimental model A for 7-actions 

(X-axis: Episode number, Y-axis: Rewards number) Fig.4. Input random vector quantization 
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Fig.5. Experimental model B 

position of the largest measurement error if the standard 

deviation is large. A standard deviation indicates that data 

are widely scatter condition of one group, and a small 

standard deviation is being able to represent as a 

representative vector, also known as quantum vector surely.  

4.1 Experiments B 

We test our approach by applying it in a continuous 

state space as shown in Figure 5. The agent learns to 

achieve optimal action, it means to arrive at a feeding area 

or reward area, and test its performance. If an agent reaches 

the goal, it receives a reward of +1, otherwise, if an agent 

collides into a border or wall, it was penalized by -1. For 

every reward, the agent is bounced to its new random 

position. The agent has 3 actions of straight forward, right 

rotation and left rotation, and observes the distance to a 

reward area and the angle between the direction of the 

agent forward movement and reward area, and learns by 

considering them as state inputs.  

Since the number of reward area is 1, these two state 

input values construct the 2-dimensional state space. The 

dimension of the state space goes up by two dimensions 

when one reward area is increased. We conducted 

experiments with one hundred thousand action learning 

times as 1 episode to 100 episodes and tested on 10 trials, 

and execute experiment as above.  

4.2 Adaptive state space partitioning with LBG     

 vector quantization algorithm 

In this section, we do the same process of partitioning 

the state space that described in section 3.1 above. However, 

since the state input values and environments are different, 

the continuous state space is not partitioned into a number 

of N-actions subspaces. Further, we group together STV by 

using the LBG type of vector quantization algorithm and 

extract the representative vectors. We all take the STV (i.e, 

do not calculate a threshold value) for the second stage of 

partition formation.  

4.3 Experimental results 

The experimental results of Figure 6 show that our 

proposed approach raises the efficiency of the reward 

learning than the regular arrangement of lattice points.  

5 Conclusions 

This paper presented a new LBG vector quantization 

algorithm for partitioning the state space to Voronoi regions 

and adaptive continuous state space partition method. In our 

experiments, a simple experiment model by an agent was 

used in different environments with different state input 

values, and the effectiveness and efficiency of reward 

learning for two algorithms has been checked. When 

looking in terms of the reward, we see that our technique 

performs almost as good as square partition lattice and 

much better than its performance.  
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