
Learning strategy with neural-networks and reinforcement learning

for actual manipulator robot

 Shingo Nakamura
1
 and Shuji Hashimoto

2

1,2
Waseda University, Tokyo 169-8555, Japan

(Tel: 81-3-5286-3233, Fax: 81-3-3202-7523)

1
shingo@shalab.phys.waseda.ac.jp,

2
shuji@waseda.jp

Abstract: When the bottom-up learning approaches are implemented for mechanical systems, we must face a problem

including huge number of trials. They take much time and give hard stress to the actual system. Simulator is often used only

for evaluation of the learning method. However, it needs simulator modeling process, and never guarantees repeatability for the

actual system. In this study, we are considering a construction of simulator directly from the actual robot with neural-networks.

Afterward a constructed simulator is used for reinforcement learning to train a task, and the obtained optimal controller is

applied to the actual robot. In this work, we picked up a five-linked manipulator robot, and made it track a ball as a training

task. Both learning processes make load against the hardware sufficiently smaller, and the objective controller can be obtained

faster than using only actual one.

Keywords: manipulator robot, neural-networks, reinforcement learning, simulator construction.

1 INTRODUCTION

The machine learning method is one of the typical

techniques that may provide robots a capability to work in

unpredictable and variable human life environment. Until

now, many kinds of machine learning method have been

proposed and they yield very effective results [1][2].

However, if they are directly applied to the actual machine,

they face a problem including huge number of trials, which

requires much time and gives stresses against the hardware

and then makes a practical application difficult. To avoid

such problems, a computational simulator is often

employed and performed with a learning method since it

permits many trials in short time without physical stresses

[3]. However, the simulator utilization for the real system

also includes some problems in its construction. Normally,

the simulator is manually modeled by differential equation

according to the physical law. Consequently, it never makes

us completely free from exacting works. Moreover, there is

no guarantee that the modeled simulator performance

matches the actual machine when its construction is

complicated. Hence, we propose a simulator construction

directly from the actual hardware. In our method, a

simulator learns the relationship between command signal

and its resultant state of the hardware. Therefore, if the

learning proceeds well, a simulator emulates the hardware

behavior certainly, and we are relieved from arduous

simulator modeling. After simulator construction, the

optimal controller for an objective behavior is trained only

with the constructed simulator. Therefore, this process

never gives harsh load to the hardware and performs faster

than directly using the hardware.

In this paper, we describe a novel method of machine

learning using both a simulator and an actual hardware. A

simulator of the hardware is directly built from the acquired

input and output data of the real hardware and it performs

with the neural-networks and the back-propagation learning

method without any information of kinematics model.

Afterward, the objective controller of the hardware is

trained only with the built simulator by the reinforcement

learning method. Finally, the optimum controller is applied

to the actual hardware. In this manner, the optimal

controller is generated via hybrid platform: simulator and

hardware, without any knowledge in advance. Here we

employed a five-linked manipulator robot as an actual

hardware platform, and the only treated properties are state

and command signals of actuators assembled into the robot.

The task for the robot to train is to track a colored ball.

Under these conditions, experiments were conducted and

the prosed method was evaluated.

2 BASIC STRATEGY

Fig.1 illustrates a basic structure and process of our

method. At first, data of the actual hardware behavior is

sampled and collected into a buffer. In this case, data means

a set of command and state of the actual hardware, and a

resultant state corresponding to the command, which

represents the relationship between input and output of the

hardware. And then the buffer supplies reference data to

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12),
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 947

build a simulator in the appropriate manner. Afterward a

controller is trained the optimal control for the objective

task using the built simulator. At this time, because of a

computational simulator, the hardware does not have to be

actually operated and training process performs faster than

using the actual hardware. Finally, the optimized controller

operates the actual hardware to perform the objective

behavior. In this way, the whole process starts from the

hardware acting, and the information is returned to the

hardware. Based on this structure, we apply to the five-

linked manipulator robot to get the optimal task control.

The implementation of each process for this problem is

explained in the chapter 4.

3 MANIPULATOR ROBOT

In this paper, our method is applied to an actual robot.

The robot we employed is a five-linked manipulator robot,

composed of five servo motors as shown in Fig.2, and their

link relations are illustrated in Fig.3. The motor is digital

servo type and performable in serial communication to

receive the action command and return the status

information. The motor control mode is configured to

“speed” mode. Finally the robot hardware consists of such

motor, and state and action command of robot mean angle

and speed command value for each motor. Specifically, we

can just send a speed command value a = (a1, a2, a3, a4, a5)

to each motor as action command for robot, and observe

each motor angle s = (s1, s2, s3, s4, s5) as robot state. Some

control limitations are given in software level. Every joint

is configured to be able to move in range [-π/2, +π/2]. If it

is out of the range, it stops until command to move for

inside direction comes. Using this platform robot, our

method is evaluated by training ball-tracking task.

4 IMPLIMENTATION

As shown in Fig.1, there are four processes in our

strategy and their efficient implementation provides a self-

learning ability to the system. In this chapter, detailed

implementation for the manipulator robot is described.

4.1 Data Collection and Supply

The data sampled from the actual robot is collected into a

buffer. In this work, data to collect is a pair information of

(st, at) and st+t. These mean the robot state s and command

a at time t, and its response state s at time t+t. And it is

supplied to a simulator for construction. Therefore, the

buffer has to keep and supply the suitable data to represent

the actual robot.

In order to supply the suitable data to construct a

simulator, the limited parameter space S× A is divided into

some sub-spaces in a number of NS× NA in similar way.

Each sub-space keeps corresponding data. At simulator

construction by neural-networks, one sub-space is chosen at

random and one sampled data is provided as learning data.

4.2 Simulator Construction

The Multi-Layered Perceptron (MLP) of the neural-

networks which is effective for the approximation of a

nonlinear function is employed to simulate the hardware. It

directly represents the robot behavior. The MLP consists of

three layers, i.e. input, hidden and output layer. The MLP is

input 10 parameters, namely the manipulator state st and

command at for each motor, while it outputs next robot

state st+t. Each neuron in the output layer is a nonlinear

unit expressed with the arctangent sigmoid function whose

output is limited in [-1, 1]. Therefore, the output value si

[-π/2, +π/2] is normalized into [-1, 1].

A simulator has the MLP network inside. In the

simulation process, it follows the MLP. The simulator

inputs the data set (s, a) at time t, and obtains the

normalized difference values in [-1, 1] as an output signal

from the MLP. The de-normalized values s is simply

represented as the state at time t+Δt. Fig.4 illustrates the

overview of running process of simulation with the MLP.

Hardware

Simulator

Controller Buffer

(i) Data Sampling

(ii) Simulator Construction(iii) Controller Optimization

(iv) Command

Fig.1. The over view of learning strategy link1

link2

link3

link4

link5

Fig.3. The link structure Fig.2.The manipulator robot

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12),
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 948

And in the process of learning, the teacher data is supplied

from the buffer, and the back-propagation method performs.

4.3 Controller Optimization

A controller learns the optimal control using a simulator.

Here, we focus on the reinforcement learning [4] to make

robot track a ball. In the reinforcement learning, the action

is evaluated by the given rewards, and the system learns

empirically the optimum action by trials and errors. In this

work, we employ the Q-Learning method for the

reinforcement learning. This is a typical method of

reinforcement learning. When the agent at time t takes the

action at based on the current state st, the state-action value

function Q(st, at) is updated as follows:

)],(),(max[),(

),(

11 ttt
a

ttt

tt

asQasQrasQ

asQ

  
 (1)

where rt is the reward the agent receives at time t, α is a

learning ratio and γ is a discount ratio. In the phase of

training, the agent chooses an action randomly. The other

hand, it takes the action a where Q(st,a) is the max value at

state st in execution phase. In this way, a controller of the

robot explores the optimum action command for each state

and then performs tracking the ball.

5 EXPERIMENT AND RESULT

5.1 Data Collection

The target data to train a simulator was sampled from

the actual manipulator robot described in the chapter 4. To

collect data, an action command a selected in the

previously mentioned manner was given with interval Δt =

50 msec. Consequently, the robot moved in the range of

motion. The division numbers NS and NA for the five-

dimensioned state space and action command space were

set to 11
5
 and 4

5
, respectively. This collection process

continued for one hour in real world. In other words, 72

thousands sample data were collected.

5.2 Simulator Construction

The learning of the neural-networks was performed by

the backpropagation method. The number of neurons in the

input, hidden and output layer were 10, 20 and 5, and a

target sample data set (st, at) and st+Δt, were randomly took

from a divided sub-space, which was selected at uniformly

random from whole space. Learning ratio was set to 0.1,

and nonlinearity ratio of nonlinear neurons in the MLP was

set to 1.0. The number of learning iterations was 10 million

times.

This operation was performed just in 10 minutes. Fig.5

shows the mean squared error (MSE) of MLP every one

thousand learning. The MSE value decreased until around

1.0×10
-3

. This means that the accuracy of learning was

about 3% in normalized space, namely about 2.6 degree of

actual angle.

5.3 Controller Optimization

Learning to track a ball was performed with the

obtained simulator in the previous section. The state space

S and command space A was divided into 9 sub-spaces at

even intervals and treated as a discrete space for each joint.

Hence, whole parameter space S × A was divided into

5
9
×5

9
 sub-spaces. The 250mm-diameter ball to track was

put in the robot-reachable space, and then, task learning

processed until the robot touched it or 2,000 steps was done

without “touch”. Here, “touch” means that the forward

point 250 mm from the robot head is inside the ball area.

This cycle is defined as “episode” in this experiment. y and

z-coordinate value of ball position was fixed, and only x-

coordinate value was selected at random for one episode.

The controller to optimize was selected, depending on the

ball x-coordinate value. Consequently, controllers as many

as division number of x-coordinate were prepared. Finally,

ball position x was selected at random from [-100, +100]

Fig.4. Neural-networks process for robot simulator

St
1

at
1

at
5

St
2

St+Δｔ
1

St+Δｔ
2

St+Δｔ
5

Fig.5. Result of simulator construction learning

0.0001

0.001

0.01

0.1

0 20,000 40,000 60,000 80,000 100,000

M
S

E

Iteration Number

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12),
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 949

mm, which was divided into 10 areas, y and z were fixed

into -32 mm and +192 mm, respectively.

The episodes to learn were repeated a million times in

the simulation world. If this operation is executed in the

real world, it would take about 28 thousand hours. The

reinforcement learning performed according to the formula

(1) with interval 50 ms. The parameters α and γ used for the

update, were set to 0.1, and 0.9, respectively. The reward

1.0 was given only at the state “touching”.

The learning process finished in twelve hours at most,

though it would take about three years in the real world.

Fig.6 shows the sequential images of ball tracking by

simulator. Depending on the target ball position, the

corresponding controller was selected and tried to make the

robot touch the ball. The moving ball finally made

continuous touching into tracking ball.

5.4 Application to actual robot

Finally, we applied the learning result of the previous

section to the actual robot controller. In this experiment, the

real ball position was detected by image processing in real

time. Two web cameras were put around the robot and

detect the red ball. The ball positions in camera image were

converted into the real world coordinate by the Direct

Linear Transformation method.

Fig.7 shows that the sequential images of the actual

robot tracking ball. At the beginning of tracking, the robot

tried to track the ball correctly. However, it shook more

widely than the simulator robot to hold its state. As the ball

moved, the robot tried following it. Nevertheless, the robot

went down as if it lost the strength. On investigation, the

command for the bottom-positioned motor was too weak to

lift up self-body though it attempted. These results raise the

possibility that accuracy of simulator by the neural-

networks was not enough.

6 CONCLUSION

We proposed a novel method of machine learning

associating with an actual hardware and its simulator. The

simulator of the manipulator robot was constructed by the

neural-networks trained with acquired data from the actual

hardware without information of the physical law.

Afterward, the ball tracking control for the manipulator

robot was learned only through the built simulator by the

reinforcement learning method. By using the simulator, the

reinforcement learning could be finished much faster than

using the real hardware without stress. However, when the

controller applied to the actual robot, it could not represent

the same way of the simulator completely.

Now we have a plan to construct a simulator after some

executions of loop flow illustrated in Fig.1. Sampled data

information is carried to the hardware controller and data is

sampled from hardware cyclically. This is very adaptable

process though physical information of target hardware is

changed due to deterioration or component exchange. If this

is actualized, our method comes more generalized for

various machinery systems.

REFERENCES

[1] J. Bongard, V. Zykov, and H. Lipson (2006),

Automated synthesis of body schema using multiple

sensor modalities, Proceedings of the Int. Conf. on the

Simulation and Synthesis of Living Systems

[2] K. Doya, K Samejima, K. Katagiri, and M. Kawato,

(2002), Multiple model-based reinforcement learning,

Neural Comput., vol.14, no.6, pp.1347-1369

[3] K. Doya (1996), Efficient Nonlinear Control with

Actor-Tutor Architecture, Advances in Neural Information

Processing System, pp.1012-1018

[4] Sutton RS, Barto AG (1988), Reinforcement

Learning: An Introduction. Cambridge, MA: MIT Press

Fig.6. Ball tracking with simulator Fig.7. Ball tracking with actual robot

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12),
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 950

