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Abstract: When the bottom-up learning approaches are implemented for mechanical systems, we must face a problem 

including huge number of trials. They take much time and give hard stress to the actual system. Simulator is often used only 

for evaluation of the learning method. However, it needs simulator modeling process, and never guarantees repeatability for the 

actual system. In this study, we are considering a construction of simulator directly from the actual robot with neural-networks. 

Afterward a constructed simulator is used for reinforcement learning to train a task, and the obtained optimal controller is 

applied to the actual robot. In this work, we picked up a five-linked manipulator robot, and made it track a ball as a training 

task. Both learning processes make load against the hardware sufficiently smaller, and the objective controller can be obtained 

faster than using only actual one. 
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1 INTRODUCTION 

The machine learning method is one of the typical 

techniques that may provide robots a capability to work in 

unpredictable and variable human life environment. Until 

now, many kinds of machine learning method have been 

proposed and they yield very effective results [1][2]. 

However, if they are directly applied to the actual machine, 

they face a problem including huge number of trials, which 

requires much time and gives stresses against the hardware 

and then makes a practical application difficult. To avoid 

such problems, a computational simulator is often 

employed and performed with a learning method since it 

permits many trials in short time without physical stresses 

[3]. However, the simulator utilization for the real system 

also includes some problems in its construction. Normally, 

the simulator is manually modeled by differential equation 

according to the physical law. Consequently, it never makes 

us completely free from exacting works. Moreover, there is 

no guarantee that the modeled simulator performance 

matches the actual machine when its construction is 

complicated. Hence, we propose a simulator construction 

directly from the actual hardware. In our method, a 

simulator learns the relationship between command signal 

and its resultant state of the hardware. Therefore, if the 

learning proceeds well, a simulator emulates the hardware 

behavior certainly, and we are relieved from arduous 

simulator modeling. After simulator construction, the 

optimal controller for an objective behavior is trained only 

with the constructed simulator. Therefore, this process 

never gives harsh load to the hardware and performs faster 

than directly using the hardware. 

In this paper, we describe a novel method of machine 

learning using both a simulator and an actual hardware. A 

simulator of the hardware is directly built from the acquired 

input and output data of the real hardware and it performs 

with the neural-networks and the back-propagation learning 

method without any information of kinematics model. 

Afterward, the objective controller of the hardware is 

trained only with the built simulator by the reinforcement 

learning method. Finally, the optimum controller is applied 

to the actual hardware. In this manner, the optimal 

controller is generated via hybrid platform: simulator and 

hardware, without any knowledge in advance. Here we 

employed a five-linked manipulator robot as an actual 

hardware platform, and the only treated properties are state 

and command signals of actuators assembled into the robot. 

The task for the robot to train is to track a colored ball. 

Under these conditions, experiments were conducted and 

the prosed method was evaluated. 

 

2 BASIC STRATEGY 

Fig.1 illustrates a basic structure and process of our 

method. At first, data of the actual hardware behavior is 

sampled and collected into a buffer. In this case, data means 

a set of command and state of the actual hardware, and a 

resultant state corresponding to the command, which 

represents the relationship between input and output of the 

hardware. And then the buffer supplies reference data to 
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build a simulator in the appropriate manner. Afterward a 

controller is trained the optimal control for the objective 

task using the built simulator. At this time, because of a 

computational simulator, the hardware does not have to be 

actually operated and training process performs faster than 

using the actual hardware. Finally, the optimized controller 

operates the actual hardware to perform the objective 

behavior. In this way, the whole process starts from the 

hardware acting, and the information is returned to the 

hardware. Based on this structure, we apply to the five-

linked manipulator robot to get the optimal task control. 

The implementation of each process for this problem is 

explained in the chapter 4. 

 

3 MANIPULATOR ROBOT 

In this paper, our method is applied to an actual robot. 

The robot we employed is a five-linked manipulator robot, 

composed of five servo motors as shown in Fig.2, and their 

link relations are illustrated in Fig.3. The motor is digital 

servo type and performable in serial communication to 

receive the action command and return the status 

information. The motor control mode is configured to 

“speed” mode. Finally the robot hardware consists of such 

motor, and state and action command of robot mean angle 

and speed command value for each motor. Specifically, we 

can just send a speed command value a = (a1, a2, a3, a4, a5) 

to each motor as action command for robot, and observe 

each motor angle s = (s1, s2, s3, s4, s5) as robot state. Some 

control limitations are given in software level. Every joint 

is configured to be able to move in range [-π/2, +π/2]. If it 

is out of the range, it stops until command to move for 

inside direction comes. Using this platform robot, our 

method is evaluated by training ball-tracking task. 

 

4 IMPLIMENTATION 

As shown in Fig.1, there are four processes in our 

strategy and their efficient implementation provides a self-

learning ability to the system. In this chapter, detailed 

implementation for the manipulator robot is described. 

4.1 Data Collection and Supply 

The data sampled from the actual robot is collected into a 

buffer. In this work, data to collect is a pair information of 

(st, at) and st+t. These mean the robot state s and command 

a at time t, and its response state s at time t+t. And it is 

supplied to a simulator for construction. Therefore, the 

buffer has to keep and supply the suitable data to represent 

the actual robot. 

In order to supply the suitable data to construct a 

simulator, the limited parameter space S× A is divided into 

some sub-spaces in a number of NS× NA in similar way. 

Each sub-space keeps corresponding data. At simulator 

construction by neural-networks, one sub-space is chosen at 

random and one sampled data is provided as learning data. 

 

4.2 Simulator Construction 

The Multi-Layered Perceptron (MLP) of the neural-

networks which is effective for the approximation of a 

nonlinear function is employed to simulate the hardware. It 

directly represents the robot behavior. The MLP consists of 

three layers, i.e. input, hidden and output layer. The MLP is 

input 10 parameters, namely the manipulator state st and 

command at for each motor, while it outputs next robot 

state st+t. Each neuron in the output layer is a nonlinear 

unit expressed with the arctangent sigmoid function whose 

output is limited in [-1, 1]. Therefore, the output value si  

[-π/2, +π/2] is normalized into [-1, 1]. 

A simulator has the MLP network inside. In the 

simulation process, it follows the MLP. The simulator 

inputs the data set (s, a) at time t, and obtains the 

normalized difference values in [-1, 1] as an output signal 

from the MLP. The de-normalized values s is simply 

represented as the state at time t+Δt. Fig.4 illustrates the 

overview of running process of simulation with the MLP. 

Hardware

Simulator

Controller Buffer

(i) Data Sampling

(ii) Simulator Construction(iii) Controller Optimization

(iv) Command

 
Fig.1. The over view of learning strategy link1

link2

link3

link4

link5

Fig.3. The link structure Fig.2.The manipulator robot 
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And in the process of learning, the teacher data is supplied 

from the buffer, and the back-propagation method performs. 

 

4.3 Controller Optimization 

A controller learns the optimal control using a simulator. 

Here, we focus on the reinforcement learning [4] to make 

robot track a ball. In the reinforcement learning, the action 

is evaluated by the given rewards, and the system learns 

empirically the optimum action by trials and errors. In this 

work, we employ the Q-Learning method for the 

reinforcement learning. This is a typical method of 

reinforcement learning. When the agent at time t takes the 

action at based on the current state st, the state-action value 

function Q(st, at) is updated as follows: 
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where rt is the reward the agent receives at time t, α is a 

learning ratio and γ is a discount ratio. In the phase of 

training, the agent chooses an action randomly. The other 

hand, it takes the action a where Q(st,a) is the max value at 

state st in execution phase. In this way, a controller of the 

robot explores the optimum action command for each state 

and then performs tracking the ball. 

 

5 EXPERIMENT AND RESULT 

5.1 Data Collection 

The target data to train a simulator was sampled from 

the actual manipulator robot described in the chapter 4. To 

collect data, an action command a selected in the 

previously mentioned manner was given with interval Δt = 

50 msec. Consequently, the robot moved in the range of 

motion. The division numbers NS and NA for the five-

dimensioned state space and action command space were 

set to 11
5
 and 4

5
, respectively. This collection process 

continued for one hour in real world. In other words, 72 

thousands sample data were collected. 

5.2 Simulator Construction 

The learning of the neural-networks was performed by 

the backpropagation method. The number of neurons in the 

input, hidden and output layer were 10, 20 and 5, and a 

target sample data set (st, at) and st+Δt, were randomly took 

from a divided sub-space, which was selected at uniformly 

random from whole space. Learning ratio was set to 0.1, 

and nonlinearity ratio of nonlinear neurons in the MLP was 

set to 1.0. The number of learning iterations was 10 million 

times. 

This operation was performed just in 10 minutes. Fig.5 

shows the mean squared error (MSE) of MLP every one 

thousand learning. The MSE value decreased until around 

1.0×10
-3

. This means that the accuracy of learning was 

about 3% in normalized space, namely about 2.6 degree of 

actual angle. 

5.3 Controller Optimization 

Learning to track a ball was performed with the 

obtained simulator in the previous section. The state space 

S and command space A was divided into 9 sub-spaces at 

even intervals and treated as a discrete space for each joint. 

Hence, whole parameter space S × A was divided into 

5
9
×5

9
 sub-spaces. The 250mm-diameter ball to track was 

put in the robot-reachable space, and then, task learning 

processed until the robot touched it or 2,000 steps was done 

without “touch”. Here, “touch” means that the forward 

point 250 mm from the robot head is inside the ball area. 

This cycle is defined as “episode” in this experiment. y and 

z-coordinate value of ball position was fixed, and only x-

coordinate value was selected at random for one episode. 

The controller to optimize was selected, depending on the 

ball x-coordinate value. Consequently, controllers as many 

as division number of x-coordinate were prepared. Finally, 

ball position x was selected at random from [-100, +100] 

Fig.4. Neural-networks process for robot simulator 
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mm, which was divided into 10 areas, y and z were fixed 

into -32 mm and +192 mm, respectively. 

The episodes to learn were repeated a million times in 

the simulation world. If this operation is executed in the 

real world, it would take about 28 thousand hours. The 

reinforcement learning performed according to the formula 

(1) with interval 50 ms. The parameters α and γ used for the 

update, were set to 0.1, and 0.9, respectively. The reward 

1.0 was given only at the state “touching”. 

The learning process finished in twelve hours at most, 

though it would take about three years in the real world. 

Fig.6 shows the sequential images of ball tracking by 

simulator. Depending on the target ball position, the 

corresponding controller was selected and tried to make the 

robot touch the ball. The moving ball finally made 

continuous touching into tracking ball. 

5.4 Application to actual robot 

Finally, we applied the learning result of the previous 

section to the actual robot controller. In this experiment, the 

real ball position was detected by image processing in real 

time. Two web cameras were put around the robot and 

detect the red ball. The ball positions in camera image were 

converted into the real world coordinate by the Direct 

Linear Transformation method. 

Fig.7 shows that the sequential images of the actual 

robot tracking ball. At the beginning of tracking, the robot 

tried to track the ball correctly. However, it shook more 

widely than the simulator robot to hold its state. As the ball 

moved, the robot tried following it. Nevertheless, the robot 

went down as if it lost the strength. On investigation, the 

command for the bottom-positioned motor was too weak to 

lift up self-body though it attempted. These results raise the 

possibility that accuracy of simulator by the neural-

networks was not enough. 

6 CONCLUSION 

We proposed a novel method of machine learning 

associating with an actual hardware and its simulator. The 

simulator of the manipulator robot was constructed by the 

neural-networks trained with acquired data from the actual 

hardware without information of the physical law. 

Afterward, the ball tracking control for the manipulator 

robot was learned only through the built simulator by the 

reinforcement learning method. By using the simulator, the 

reinforcement learning could be finished much faster than 

using the real hardware without stress. However, when the 

controller applied to the actual robot, it could not represent 

the same way of the simulator completely. 

Now we have a plan to construct a simulator after some 

executions of loop flow illustrated in Fig.1. Sampled data 

information is carried to the hardware controller and data is 

sampled from hardware cyclically. This is very adaptable 

process though physical information of target hardware is 

changed due to deterioration or component exchange. If this 

is actualized, our method comes more generalized for 

various machinery systems. 
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Fig.6. Ball tracking with simulator Fig.7. Ball tracking with actual robot 
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