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Abstract: This paper deals with a nonparametric identification of continuous-time Hammerstein systems using Gaussian process
(GP) models. A Hammerstein system consists of a memoryless nonlinear static part followed by a linear dynamic part. The
identification model is derived using the GP prior model which is described by the mean function vector and the covariance
matrix. This prior model is trained by the separable least-squares approach combining particle swarm optimization with the
linear least-squares method to minimize the negative log marginal likelihood of the identification data. Then the nonlinear static
part is estimated by the predictive mean function of the GP, and the confidence measure of the estimated nonlinear static part is
evaluated by the predictive covariance function of the GP. Simulation results are shown to illustrate the proposed method.
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1 INTRODUCTION

The Hammerstein system is expressed by a memoryless
nonlinear static part followed by a linear dynamic part and
has many advantages for control design or stability analy-
sis due to its simple model structure. Numerous identifica-
tion methods have been proposed for discrete-time Hammer-
stein systems [1, 2, 3]. Since these approaches are catego-
rized into parametric identification, one needs to use a large
number of weighting parameters to describe the nonlinear-
ity and handle a complicated model structure determination.
Moreover, no confidence measures for the estimated nonlin-
ear static part are obtained in parametric identification. On
the other hand, we have developed a nonparametric identifi-
cation method based on the Gaussian process (GP) models,
which can give the estimated nonlinear function with the con-
fidence measure [4]. However, since most practical systems
are usually continuous-time, it is very important to develop
an accurate identification method for continuous-time Ham-
merstein systems.

Therefore, in this paper, we discuss the nonparametric
identification of continuous-time Hammerstein systems us-
ing the GP model. The identification model is derived using
the GP prior model which is described by the mean function
vector and the covariance matrix. The prior mean function is
represented in linear form of the input and the prior covari-
ance function is expressed by the Gaussian kernel. This prior
model is trained by the separable least-squares (LS) approach
combining particle swarm optimization (PSO) [5] with the
linear LS method to minimize the negative log marginal like-
lihood of the identification data. PSO is a swarm intelligence
optimization technique, which was inspired by the social be-

havior of a flock of birds or a shoal of fish, and has been
empirically shown to be very efficient for optimization. The
use of PSO might increase the efficiency of identification due
to its simple algorithm. The hyperparameters of the covari-
ance functions and the numerator parameters of the linear dy-
namic part are represented with the particles and are searched
by PSO, while the denominator parameters of the linear dy-
namic part are estimated by the linear LS method. Then the
nonlinear static part is estimated by the predictive mean func-
tion of the GP, and the confidence measure of the estimated
nonlinear static part is evaluated by the predictive covariance
function of the GP. Simulation results show that the accuracy
of the proposed method is superior to that of a conventional
identification method.

2 STATEMENT OF THE PROBLEM
Consider a single-input, single-output continuous-time

nonlinear system described by the Hammerstein model
shown in Fig. 1. This system can be mathematically de-
scribed as⎧⎪⎨

⎪⎩
n∑

i=0

aip
n−iy(t) = b0x(t) (a0 = 1)

x(t) = f(u(t)) + ε(t)

(1)

where u(t) and y(t) are input and output signals, respec-
tively. x(t) is intermediate signal that is not accessible for
measurement. f(·) is unknown nonlinear function, which
is assumed to be stationary and smooth. ε(t) is assumed to
be a zero-mean Gaussian noise with variance σ2n. A(p) =∑n

i=0 aip
n−i is the denominator polynomial of the linear dy-

namic part, where p denotes a differential operator. n is as-
sumed to be known.
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Fig. 1. Continuous-time Hammerstein system

The aim of this paper is to identify the system parameters
{ai} and {bj} of the linear dynamic part, and the nonlinear
static function f(·) with the confidence measure, from input
and output data in the GP framework.

3 IDENTIFICATION MODEL BY THE GP
The following state variable filter F (p) is introduced in

order to evaluate higher order derivatives of signals:

F (p)=
1

pq+γ1pq−1+· · · · · ·+γq (q>n) (2)

Multiplying both sides of Eq. (1) by F (p) yields⎧⎪⎨
⎪⎩

n∑
i=0

aip
n−iyf (t) = b0x

f (t)

xf (t) = F (p)f(u(t)) + εf (t)

(3)

where yf (t) = F (p)y(t), xf (t) = F (p)x(t) and εf (t) =

F (p)ε(t). When F (p) has a transport lag characteristic, the
filter F (p) and the nonlinear function f(·) are exchangeable
and it follows that F (p)f(u(t)) = f(F (p)u(t)) = f(uf (t)).
Thus Eq. (3) becomes⎧⎪⎨

⎪⎩
n∑

i=0

aip
n−iyf (t) = b0x

f (t)

xf (t) = f(uf (t)) + εf (t)

(4)

In general the Butterworth filter has approximately a trans-
port lag characteristic for frequencies ω ≤ ωc, where ωc is
the cutoff frequency. Therefore, the Butterworth filter is uti-
lized as the delayed state variable filter F (p) in this paper.

Putting t = t1, t2, · · · , tN into Eq. (4) yields

y = Aθa + b0x (5)

where

y = [pnyf (t1), p
nyf (t2), · · · , pnyf (tN )]T

x = [f(uf (t1)) + εf (t1), f(u
f (t2)) + εf (t2),

· · · , f(uf (tN )) + εf (tN )]T

θa = [a1, a2, · · · , an]T

A =

⎡
⎢⎢⎢⎣

−pn−1yf (t1) · · · −yf (t1)
−pn−1yf (t2) · · · −yf (t2)

...
...

−pn−1yf (tN ) · · · −yf (tN )

⎤
⎥⎥⎥⎦

(6)

A GP is a Gaussian random function and is completely
described by its mean function and covariance function. We
can regard it as a collection of random variables with a joint
multivariable Gaussian distribution. Therefore, the function
values f can be represented by the GP:

f ∼ N (m(u),Σ(u,u)) (7)

where

f = [f(uf (t1)), f(u
f (t2)), · · · , f(uf (tN ))]T

u = [uf (t1), u
f (t2), · · · , uf (tN )]T

(8)

u is the input (variable) of the function f , m(u) is the mean
function vector, and Σ(u,u) is the covariance matrix. In this
paper the mean function is expressed as m(uf (t)) = uf (t),
i.e., the mean function vector m(u) is described as follows:

m(u) = u (9)

The covariance Σpq = s(u(tp), u(tq)) is an element of
the covariance matrix Σ, which is a function of u(tp) and
u(tq). Under the assumption that the nonlinear function f(·)
is stationary and smooth, the following Gaussian kernel is
utilized in this paper:

Σpq = s(u(tp), u(tq))

= σ2
y exp

(
−|u(tp)− u(tq)|2

2�2

) (10)

From Eq. (7), the intermediate signal vector can be written
as

x ∼ N (m(u),K(u,u)) (11)

where
K(u,u) = Σ(u,u) + σ2

nIN

IN : N ×N identity matrix
(12)

and θc = [σy, �, σn]
T is called the hyperparameter vector.

Applying the property of the multivariable Gaussian dis-
tribution for the linear transformation to Eqs. (5) and (11),
the identification model by the GP is derived as

y ∼ N (b0m(u) +Aθa, b
2
0K(u,u)) (13)

4 IDENTIFICATION

4.1 Training by PSO
First, the GP prior model is trained by optimizing the

unknown parameter vector θ = [θT
a , b0,θ

T
c ]

T. Although
this is a nonlinear optimization problem, we can separate
the linear optimization part and the nonlinear optimization
part. Therefore, in this paper, we propose a separable LS
approach combining PSO with the linear LS method. Only
Ω = [b0,θ

T
c , ωc]

T is represented with the particles and
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searched by PSO. The proposed training algorithm is as fol-
lows:
Step 1: Initialization

Generate an initial population of Q particles with random
positions Ω0

[i] = [b0[i],θ
T
c[i], ωc[i]]

T and velocities V 0
[i] (i =

1, 2, · · · , Q).
Set the iteration counter l to 0.

Step 2: Filtering of the identification data
Construct Q candidates of the state variable filter using

ωc[i]. Calculate the filtered input uf[i](t), filtered output yf[i](t)
and their higher-order derivatives, using each candidate of the
state variable filter. Then construct Q candidates of y[i], A[i]

and u[i] (i = 1, 2, · · · , Q).
Step 3: Construction of covariance matrix

Construct Q candidates of covariance matrix K[i] using
θc[i] (i = 1, 2, · · · , Q).
Step 4: Estimation of θa[i]

EstimateQ candidates for θa[i] corresponding to Ω[i] (i =

1, 2, · · · , Q):

θa[i] = (AT
[i]K−1

[i] A[i])
−1AT

[i]K−1
[i] (y[i] − b0[i]u[i]) (14)

where K[i] = b20[i]K[i].
Step 5: Evaluation value calculation

Calculate the negative log marginal likelihood of the iden-
tification data:

J(Ωl
[i]) =

1

2
log |K[i]|

+
1

2
(y[i] − b0[i]u[i] −A[i]θa[i])

TK−1
[i]

×(y[i] − b0[i]u[i] −A[i]θa[i]) +
N

2
log(2π)

(15)

Step 6: Update of the best positions pbest and gbest

Update pbestl[i], which is the personal best position, and
gbestl, which is the global best position among all particles
as follows:

If l = 0 then

pbestl[i] = Ωl
[i]

gbestl = Ωl
[ibest]

ibest = argmin
i
J(Ωl

[i])
(16)

otherwise

pbestl[i] =

{
Ωl

[i] (J(Ωl
[i]) < J(pbestl−1

[i] ))

pbestl−1
[i] (otherwise)

gbestl = pbestl[ibest] ibest = argmin
i
J(pbestl[i])

(17)
Step 7: Update of positions and velocities

Update the particle positions and velocities using Eq.
(18):⎧⎪⎪⎨
⎪⎪⎩

V l+1
[i] = wl · V l

[i] + c1 · rand1() · (pbestl[i] −Ωl
[i])

+c2 · rand2() · (gbestl −Ωl
[i])

Ωl+1
[i] = Ωl

[i] + V l+1
[i]

(18)

where wl is an inertia factor, c1 and c2 are constants repre-
senting acceleration coefficients, and rand1() and rand2()
are uniformly distributed random numbers with amplitude in
the range [0, 1].
Step 8: Repetition

Set the iteration counter to l = l+1 and go to Step 2 until
the prespecified iteration number lmax.
Step 9: Determination of the GP prior model

Determine the vector Ω̂ = [b̂0, θ̂
T
c , ω̂c]

T and the cor-
responding denominator parameters of the linear dynamic
part θ̂a = [â1, â2, · · · , ân]T using the best particle position
gbestlmax . Construct the suboptimal prior covariance func-
tion:

s(uf (tp), u
f (tq))

= σ̂2
y exp

(
−|uf (tp)− uf (tq)|2

2�̂2

)
(19)

4.2 Estimation of the nonlinear static function
The estimates of the intermediate signal vector x̂ can be

evaluated as follows:

x̂ =
1

b̂0
(y −Aθ̂a) (20)

Let the test input vector and the corresponding function
value vector and intermediate signal vector be u∗, f∗ and
x∗, respectively. Then the posterior distribution for f∗ is
obtained as

f∗|u, x̂,u∗ ∼ N (f̄∗, cov(f∗)) (21)

where f̄∗ is the predictive mean vector and cov(f∗) is the
predictive covariance matrix, which are given as follows:

f̄∗ = m(u∗) +Σ(u∗,u)K−1(x̂−m(u))

cov(f∗) = Σ(u∗,u∗)−Σ(u∗,u)K−1Σ(u,u∗) (22)

Thus, the nonlinear static function of the objective system is
estimated as

f̂(u∗(t)) = m(u∗(t))

+Σ(u∗(t),u)K−1(x̂−m(u))
(23)

and its covariance function ŝ is evaluated as

ŝ(u∗(tp), u∗(tq)) = s(u∗(tp), u∗(tq))

−Σ(u∗(tp),u)K−1Σ(u, u∗(tq))
(24)

The predictive covariance function k̂ of the intermediate sig-
nal is obtained as

k̂(u∗(tp), u∗(tq)) = ŝ(u∗(tp), u∗(tq)) + σ̂2
nδpq (25)

where δpq is the Kronecker delta, which is 1 if p = q and
0 otherwise. Equations (24) and (25) are used as confidence
measures of the estimated nonlinear static function and the
intermediate signal, respectively.
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5 NUMERICAL SIMULATIONS
Consider a continuous-time Hammerstein system de-

scribed by ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ÿ(t) + a1ẏ(t) + a2y(t) = b0x(t)

x(t) = f(u(t)) + ε(t)

a1 = 3.0, a2 = 1.5, b0 = 1.0

f(u(t)) = u(t) + 0.5u3(t)

(26)

The output signal is generated by a random signal of band-
pass 3.0[rad/s]. The sampling period is taken to be T =

0.05[s]. ε(t) is zero-mean Gaussian noise with a standard
deviation σn of 2.1, which means the noise-to-signal ra-
tio (NSR) is 20%. The number of input and output data
is N = 300. The design parameters for PSO are chosen
as follows: particle size: Q = 50, inertia factor: wl =

wmax−(wmax−wmin)l/lmax (wmax = 0.9, wmin = 0.4),
acceleration coefficients c1 = 1.0, c2 = 0.9, maximum iter-
ation number lmax = 200.

Estimates of of the parameters in the linear dynamic part
are â1 = 3.072 and â2 = 1.490, respectively, where estimate
of b0 is omitted because the final estimated model is normal-
ized by b̂0. Fig. 2 and Fig. 3 show the estimated nonlinear
function and the estimated intermediate signal with the dou-
ble standard deviation confidence intervals, respectively.

Monte-Carlo simulations of 20 experiments are imple-
mented for the proposed method and conventional RBF-
based method. Table 1 shows the mean squares errors be-
tween the true outputs and the outputs of the estimated mod-
els for various values of σn on the average of 20 experiments.

6 CONCLUSIONS
In this paper a novel nonparametric identification method

for continuous-time Hammerstein systems has been pro-
posed using the GP model. The GP prior model is trained by
the separable LS approach combining the linear LS method
with PSO so that the negative log marginal likelihood of the
identification data is minimized. The nonlinear static part of
the objective Hammerstein system is estimated by the predic-
tive mean function of the GP, and the confidence region of the
estimated nonlinear static part is given by the predictive co-
variance function. Simulation results show that the accuracy
of the proposed method is superior to that of a conventional
identification method.
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