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Abstract: In this paper we presented a novel robust method for a visual IMU in manhattan-like environments i.e. the frequently

observed dominance of three mutually orthogonal vanishing directions in man-made environments. Our approach is based on

the idea of the separate estimation of the rotational and translational motion based on dense 3D and 2D features. We estimate the

Manhattan-like structure by using an MSAC variant that estimates the Manhattan system directly from the 3D data. In contrast to

other methods we use only the normal vectors of each voxel rather than estimating it indirectly using plane estimation. In a next

step we estimate the translative motion of the robot relative to the Manhattan system using constrained visual odometry. Both

rotational and translational motions are fused in a UKF. We show the robustness of our Manhattan-estimation using real world

data. In this paper we demonstrate our approach using a Microsoft Kinect, while the approach will work with all kind of 2.5D

sensors.
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1 INTRODUCTION

The domain of service robotics has become an important

and fast growing market in the last decade. While service

robotics has become more and more common in the industry

domain they are still rare in the home robotics domain.

Recent demographic developments in Europe and Japan

have shown that there is a need for service robotics in every-

body’s home due to the elderly society phenomenon. With

the home robotics domain we have usually a relative small

area (e.g. 100m2), clutter and visually weakly structured

environments. To cope with these environments, the use of

2.5D sensors has become quite popular in the last decade.

With the recent release of Microsoft’s Kinect sensor, the

popularity of 2.5D sensors gained a boost. The Kinect

sensor is suitable for the task for two reasons: The sensors

are cheaper than laser scanners and its offers a depth image

at frame rate. The challenge with data from 2.5D data is to

cope with noise and uncertainty due to the nature of the sen-

sors. For instance, the quality of 2.5D data from the Kinect

depends on the reflection properties of the observed sur-

face and the angle of incidence (assuming Lambert surfaces).

In this paper we propose a novel method to estimate

the absolute rotation (namely roll, pitch and yaw) and

relative translative motion from 2.5D data by exploiting

partial Manhattan-like Geometry of an indoor environment.

Manhattan-like structures are the frequently observed dom-

inance of three mutually orthogonal vanishing directions in

man-made environments. Many indoor environments can be

considered as Manhattan-like since most walls of a room are

aligned orthogonally to the ground or quasi Manhattan-like

if the walls are not aligned orthogonally to each other. In

many cases, furniture is also aligned Manhattan-like to its

environment, e.g. a couch or cupboard can be aligned with

a wall. Here we emphasize that it is not necessary that the

furniture is aligned to all three major axes i.e. even if a table

is not aligned to a wall its table surface is usually parallel to

the ground.

The novelty of the paper is twofold: First an MSAC

variant that directly estimates an Manhattan-system based on

normal vectors. In this paper we use it to detect the dominant

Manhattan system in the image. The second contribution is a

geometric constrained visual odometry in combination with

a UKF that exploits kinematic constrains of robot motion.

The approach is efficient and robust to noise.

The paper is organized as follows: After a brief discussing on

the state of the art, we describe in section 3.1 the proposed

approach in two major parts: The first part describes the es-

timation of the Manhattan system within the 2.5D data. The

second part (3.2) presents the constrained visual Odometry.

Finally, we give the conclusion and results in section 4.

2 RELATED WORK
Visual odometry is a relative young area in the field of

robotics. A poplar approach is the estimation using motion

models (top-down). Davison et al. [1] proposed a method

where a underlying motion model predicts the position of

features to the next frame and updates it with a EKF. This

idea was also used by Clipp et al.[2] by using multiple EKF

filters or by [3] using more sophist aced features for tracking.

Another idea is to use structure from motion techniques
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(a) Normal Vectors (b) Image

Figure 1: Estimated Manhattan System of a sample scene.

The colors indicate the membership to one of the three major

axis.

instead of EKF filter as proposed by Klein et al. [4] or only

using spares bundle adjustment Konolige et al. [5] for pose

refiement.

The use of the Manhattan-World assumption is quite popu-

lar in the computer vision literature, for instance, in the use

of multi view-reconstruction [6, 7, 8]. Gallup et al. [6] use

Manhattan-World assumption as prior for plane sweeping i.e.

using only orthogonal planes. Furukawa et al. [8] use a simi-

lar approach for reconstructing piecewise planar patches and

Markov random field formulation for exact planes. Sinha et

al. [7] use a similar method, but with a less strict model.

Gupta et al. [9] extend the idea by including not a-priory

known kinematics on image structure.

3 OUR APPROACH
Our approach consist of three steps: First, we estimate the

Manhattan-like structure by using an MSAC variant that es-

timates the Manhattan system directly from the 3D data. In

contrast to other methods we use only the normal vectors of

each voxel rather than estimating it indirectly using plane es-

timation. In a next step we estimate the translative motion of

the robot relative to the Manhattan system using constrained

visual odometry. Finally we combine both estimates with a

unscented Kalman filter to reject implausible motions.

3.1 Manhattan System Estimation
We propose an approach using a variant of the well

known Random Sample Consensus (RANSAC) techniques.

RANSAC based methods obtain their estimate by randomly

selecting coefficients from a given dataset to a known model.

The estimation is iterative, in each iteration the number of in-

lier is counted. After a fixed number of iterations, the model

with the most inlier is used as estimate.

The idea is to describe the Manhattan-world as three normal

vectors �N1, �N2, �N3 one for each axis. We use the normal

vectors to express the orientation to an axis i.e. the vector is

virtually aimed in both directions of the axis. We use a nor-

mal vector estimation based on integral images and is a good

Z-Plane

Y-Plane

A

B1
B2

x
z

y

Figure 2: Estimating the Manhattan configuration using three

normal vectors and RANSAC methods: A is used as seed for

the Manhattan system for the first axis. B1, B2 are used to

calculate the ”roll” of the second axis and the third axis is

redundant. Here we assume that A and B1, B2 do not share

the same orientation plane of the Manhattan system, but that

B1, B2 does.

trade off of runtime and quality. The normal vector of a voxel

counts as an inlier, if the angle to one of the three axis nor-

mal vectors is within a certain threshold e.g. 5 degrees. The

resulting angle is always between 0-90 degrees, since an axis

does not have an orientation like a normal vector. The model

is given as follows: Let �A, �B1, �B2 ∈ V randomly selected

voxels of the 2.5D grid and �a,�b1,�b2 its associated normal

vectors. The three vectors are calculated with:

�N1 = �a

�N2 = �B2 + �a(( �B1 − �B2) · �a) − �B1

�N3 = �N1 × �N2

The entire concept is depicted in figure 2: The overall

assumption is that A is a point on a Manhattan-like structure

for instance on the ”Z-Plane”. B1 and B2 are both on cor-

responding different Manhattan-like structure for instance

the ”Y-Plane” or ”X-Plane”. Since the Manhattan system is

redundant to one axis, we only need to calculate two axes

e.g. in figure 2 the x axis is redundant. The first vector is

given by the normal vector of A itself. The second vector

is obtained by shifting the first vector to B1 and using B2

as ”roll” component. The third vector is the cross product

of both previous vectors. This approach generates always a

valid Manhattan system using three vectors. Note that we

do not check in advance if e.g. B1 and B2 are on the same

plane, since we have no prior information about planes in

the 2.5D data at this step. Such ”inplausible configurations”

usually generate a Manhattan system with a significant less

inliers than a ”proper configuration” like in figure 2.

In practice we use MSAC [10] for estimation, an M-
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Estimator RANSAC variant: Instead of counting inlier

within a specific threshold, we accumulate the error of the

model from the original data. The MSAC uses a threshold to

specify a maximum error that a voxel belong to the model.

Since we assume that we have one dominant Manhattan sys-

tem we adapt this approach. The idea is to use an additional

fixed error if an error exceeds the maximum error. In practice

the additional fixed error is significant greater than the mea-

sured maximum error according to the threshold. This will

raise the probability that the MASC will favor the dominant

system rather than a valid random one as long the dominant

one is also the largest one in the data. In our setup we use

5 degrees as threshold and 10 times as max constant error.

Figure 1 shows an correct estimated Manhattan system.

3.2 Geometric Constratined Visual Odometry
The visual odometry is used to estimate the relative transla-

tive motion of the robot to the estimated Manhattan system

since the rotation was already obtained on the previous step.

We use standard KLT [11] features to track to estimate the

motion in the 2.5d data. The tracking is done on the 2D

grayscale image using the GPU within > 1ms with Zach

et al. [11] implementation. The depth estimation for each

point is straight forward, we use the xyz coordinates from

the depth data. The motion estimation is done with a one

point RANSAC matching with known depth and known cor-

respondence per point. One tracked point is chosen as model

i.e. the relative motion of the point in 3D and the previous

point while the roation is removed before. As with the stan-

dard RANSAC the solution with the most inliers in chosen

and used for motion estimation, see figure 3. Only tracked

KLT points with valid (non interpolated) depth are used. We

use a maximum distance of 10cm for inliers and 50 iterations.

The entire runtime for our visual odometry is > 1ms.

3.3 Data filtering with UKF
In a first step we track the rational movement and convert it to

a angular motion speed for all three angles. The translational

part is converted similar to translation speed. In order to cope

with either homonymic and non-holonomic robot, we use a

(a) Rotative Motion (b) Translative Motion

Figure 3: Visual Odometry using KLT features and

RANSAC motion estimation. Outliers are shown in Red, In-

liers in Green

motion inertia model, in the fashion of Rao-Blackwellized

particle filters [12]. We a central point of mass (like the cen-

ter of the wheels) as center for all rotations and translational

motions. We also assume that the robot is heavy and that a

mass lays on top of the center point of mass to prevent that

the robot jumpsy up and down in the estimation process. We

decompose the six speeds into forces that push the center of

mass, plus the gravity (or mass on top) on the center of mass

point. Using this sevens force leads to that the UKF filters

out implausible motions without expoliting the kinematics to

much in detail. We use a straight forward uncended Kalman

filter UKF for data fusion, as proposed in various literature

e.g. [13]. We don’t use an EKF due to it can easly get stuck

in local minima, while UKF allows multiple hypothis in the

uncended transformation.

4 CONCLUSION AND RESULTS
In this paper we presented a novel robust method for a visual

IMU in manhattan-like environments. Our approach is

based on the idea of the separate estimation of the rotational

and translational motion based on dense 3D and spares 2D

features. The proper estimation depends on the amount

of visible structure of the Manhattan system within the

2.5D data. As long structure of two axis is visible a robust

estimation is possible. As long as Manhattan structure of

one axis is clearly visible in the image, its enough that the

second axis is partially visible within the data i.e. at least

1 percent of the data. The use of normal vectors is efficient

for Manhattan system estimation, but can be computational

expensive. The use of integral image style normal vector

estimation is a good trade off of runtime and quality and

allows to use the entire data set rather than a sub sampled

set. Our implementation of the constrained visual odometry

is efficient and simple due to only the translative motion part

remains.

The overall rotational error is less than 0.2degree, the relative

translative error is less than 2mm within a travelling distance

of 10m using a Microsoft Kinect. In contrast to other

methods we obtain the absolute rotation to the environment

instead of the relative rotation like with Visual SLAM. While

our work uses the Kinects as sensor, it is also applyable to

all kind of 2.5D sensors. We successful used our approach

for mapping with a tilting laser scanner using only our visual

IMU.

Experiments have shown that many home and office envi-

ronments contains Manhattan like structure with all three

axis. We want to emphasize that the minimal Manhat-

tan system for our approach are two axis, which is very

likely in the most indoor environments. That is usually
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the ground and a random wall which will be aligned

orthogonal in most indoor cases. We figured out that this

kind of condition does not hold true in some museums, for

instance the Solomon R. Guggenheim Museum in New York.

We also find our Manhattan system estimation every useful in

the combination with SLAM in indoor environments. Since

our system eliminates to 99.8% the rotation from the data,

SLAM has only to deal with the translational mapping er-

ror. First experiments with the gmapping package in wil-

low garages Robot Operation System ”ROS” have shown im-

proved results with fewer misalignment scans. Due to that

gmapping assumes an non-holonomic robot, we had to hack

the code to support a psydo-holonomic one.

Our next steps is to relax the Manhattan constrains and to

combine our method with SLAM with visual finger prints

for place recognition.
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