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Abstract: Many robotics applications that rely on computer vision for long-term route planning can benefit from increasing 
the resolution of the imagery used for that planning. Increased resolution increases the effective planning timeframe and allows 
the AI planner to consider obstacles that are more distant. As a best-case scenario, a route that might otherwise be taken just to 
encounter a distant obstacle that requires significant backtracking could be avoided. Super-resolution image enhancement, 
however, introduces its own problems as it can create false positive and false negative inclusions. Thus, for many applications, 
basic super resolution is unsuitable for robotic planning applications as the level of accuracy of the enhanced data is unknown.  
A framework for reporting confidence in super-resolution enhancement is presented in this paper. This approach includes a 
numeric confidence map along with the super-resolved data. The AI consumer of the enhanced data can, thus, consider both the 
data as well as the confidence meta-data. This framework is demonstrated and evaluated via an implementation of a database-
based super-resolution technique that also supplies confidence map data. Robotic applications are discussed. 
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1 INTRODUCTION 

Robotic control decision-making can have disastrous 

effects when it is based on inaccurate data.  When a failure 

happens, it is important to be able to ascertain what caused 

that failure.  Many artificial intelligence (AI) techniques, 

however, make this difficult.  Some techniques train on-

the-fly resulting in a decision being made with a framework 

that existed for a single moment-in-time and may never 

reoccur.  While, theoretically, the data, node weightings, 

and other factors relevant to a decision could be preserved 

via storage, this is practically problematic – particularly 

when one considers that a craft that makes a poor decision 

may be destroyed (as a result of the decision, or otherwise), 

making the data unavailable for analysis.  While this 

problem is wide-ranging and affects all areas of AI decision 

making, this paper deals with error that can be introduced 

via super resolution (the enlargement of images via 

computer processing) and how this error can be quantified 

and its potential factored in to the decision making process. 

2 BACKGROUND 

Numerous approaches to super resolution have been 

suggested.  These approaches can be divided in to two 

main categories: those which infer data and those which 

simply piece together existing data.   Piecing solutions 

[e.g., 2, 3, 4, 7] use several images of a scene or subject and 

take advantage of camera shifts or movement to allow a 

higher resolution image to be constructed from two or more 

low-resolution images.    

Inference-based super resolution [e.g., 6], alternately, 

draws on patterns in the image format, prior knowledge or 

other sources to create an output image that attempts to 

replicate what would produced by capturing the original 

scene or subject at the output resolution.  Inference-based 

approaches can be further divided into approaches which 

attempt to apply an algorithm to a single image to enhance 

it without additional information and approaches which 

base the output on both the input image and prior 

knowledge.  All present forms of super resolution only 

produce approximations of the actual high-resolution 

image; these approximations can (and usually do, to various 

extents) include false positive inclusion and false negative 

exclusion. 

Robotic AI control systems use imagery for immediate 

decision-making and long range planning.  Immediate 

decision-making can include obstacle avoidance, target 

location and identification, and such.  Long range 

planning uses image analysis for target identification, 

prediction of traverse-ability and, terrain type.   

A short-range perception failure could result in damage 

to or loss of the robot (due to misjudging the terrain and 

falling or flipping).  This, however, is unlikely as at close 

range the obstacles are quite large and would be difficult to 

miss (to the extent where super resolution would generally 

be unnecessary).  Also, other techniques can be used to 

avoid these perils (such as a scanning laser or whisker, etc.). 

At a longer range, however, super resolution is very 

relevant and the cost of bad information can be significant.  

Two scenarios deserve consideration.  In the first long-
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rage imagery scenario, enhanced imagery is used for route 

planning.  In this instance, detail removal (via super 

resolution smoothing) can result in obstacles going 

unrecognized – conversely, it can also result in a preferable 

path being smoothed over to look no different than near-by 

obstacles).  This may cause the robot to commit to a path 

which it will later be forced to backtrack from when higher-

resolution imagery correctly detects the true nature of the 

path. 

In the second scenario, super-resolved imagery is used 

for target location and identification.  Particularly if the 

object size is close to the working-block size of the super 

resolution (for prior knowledge SR systems), it is possible 

that one complete image is incorrectly replaced with 

another.  A friendly craft may thus be targeted as a foe or a 

foe incorrectly ignored as a friend. 

3 SUPER RESOLUTION TECHNIQUE 

The proposed approach makes three important additions 

to previous super resolution research.  It starts with a 

trained database-based approach with corner matching 

loosely based on [5].  It adds to this the integration of a 

commercial database product for storage and searching, 

weighting of the search based on pattern occurrence 

training, and the inclusion of a confidence level map with 

the produced image. 

3.1 Training 
Training populates the database.  Source images are 

trained to identify patterns starting at each pixel (excluding 

those on the far right and bottom where the training box 

size would be cut off by the image edge) in the image, 

starting from the top left.  Figure 1 demonstrates how a 

given area of the image actually is used to crate numerous 

training patterns.  The number of patterns produced by a 

given image is N=(H-A)(W-a), where a is the height and 

width of the pattern size.   

Patterns collected in training are stored in the database 

at three resolutions.  They are stored at the full resolution, 

a medium resolution (which will equate to the resolution of 

the images to be presented later) and a low resolution which 

is stored to aid in pattern matching when processing a 

presented image.  The database contains a column for each 

pixel-location in each pattern size.  An index is applied 

only to the database columns for the low-resolution image, 

to speed searching later.  A temporary index may be 

incorporated for the high-resolution patterns to speed the 

training process; however, this should be removed before 

presenting images for SR. 

For each pattern that is sliced from each training image, 

the database is searched for a match.  If a match is found 

an ‘occurrence’ counter is incremented and no further work 

is done.  If no match is found, the medium and low 

versions of the pattern are created via averaging the 

corresponding pixels of the high-resolution pattern and 

stored; the occurrence counter for the pattern is set to 1. 

3.2 Image Enhancement 
The image is processed through one medium-size 

pattern at a time, with a slight overlap.  For each location, 

the medium resolution pattern from the source image is 

used to make a low-resolution pattern which is used to 

search the database and identify candidate patterns.  Some 

previous work has attempted to fulfill a particular quota 

when selecting candidate patterns.  In this instance, 

patterns are searched for based on a maximum difference 

from the low-resolution pattern (applied on a per-pixel 

basis).  Any patterns which match the criteria are selected 

for consideration.  If a match is not found, the tolerances 

are increased incrementally until a match is found or a 

maximum level of tolerance increase is reached.  In the 

case where the search stops without finding a match, the 

medium resolution pattern is enlarged and placed in to the 

final image. 

If candidates are identified, the medium resolution 

patterns (associated with the particular small size patterns 

selected in the search) are then used to select the pattern 

that will be placed in the final image.  The medium 

patterns are compared to the medium pattern from the 

presented image and a difference value is computed.  They 

are also compared to the overlap area and a difference value 

is computed.  Finally, the ‘occurrence’ value stored with 

each pattern is retrieved.  A final merged difference 

evaluation value is computed:  

     O)*(c-DO)*(b+DM)*(a=DEV  (1) 

where a, b and c are the weighting constants (respectively) 

for the medium-pattern-difference (DM), overlap-

 
Fig. 1.  Source Image Slicing 
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difference(DO) and occurrence level (O).  The prevailing 

pattern is placed in to the final image and the confidence 

map is updated. 

3.3 Confidence 
For each pattern of pixels placed in to the final image, a 

corresponding entry is placed in to the confidence map.  
The map, which is created as an ASCII text file, is depicted 
visually in figure 4.  The confidence value is similar to the 
DEV used during the enhancement process; however, it is 
presented as a confidence value (as opposed to a weighted 
difference).  The confidence value is calculated:  

C=[(w*DM)+((1-w)*DO)]/K * (O/OMax)  (2) 

where K is the maximum difference possible and OMax is 
the maximum number of occurrences recorded for a single 
pattern in the current database (OMax could also be set to an 
arbitrary value).  It is expected that this confidence map 
can be fed into the AI planning routine and incorporated in 
its internal route confidence assessment process. 

4 TECHNIQUE EVALUATION 

A frequently used approach to evaluating super 

resolution is to compare the SR output image to the original 

image on a pixel-by-pixel basis.  While this approach has 

the benefit of simplicity, it does not provide a particularly 

useful metric for evaluating the real-world performance of 

super resolution.  In the case of images that will be viewed 

by humans, the question (generally) isn’t one of whether 

the image is pixel-perfect, but instead relates to whether the 

image looks to be of high enough resolution.  For example, 

in super resolving video for recreational viewing (such as in 

[3]), the objective is not to make the image perfect – but to 

make sure that the image is believably high-res.  In other 

applications (such as the discussed application of AI 

decision making or barcode enhancement [e.g., 1]), the 

smoothness and high-resolution-look of the image are 

unimportant.  What is important, however, is the accurate 

representation of critical features.  To this end, a suitable 

performance evaluation metric is the correlation of low 

confidence with error areas.  We can’t expect the SR 

algorithm to perfectly enlarge every part of every image, 

every time but we must be able to ascertain how good each 

super-resolved image area is in order to include it in 

decision-making. 

4.1 Subjective Visual Evaluation 
The visual effect of the super resolution process is, 

obviously, quite subjective.  Further, in an application in 

robotic guidance, the appearance of the super-resolved 

image to human observers is secondary to its utility for 

decision-making.  However, as this is a commonly used 

metric for evaluating super resolution, it is appropriate to 

discuss it briefly.  As figures 2 and 3 demonstrate, the 

algorithm seems (visually) to perform quite well on pattern-

filled areas.  Edges, however, can prove difficult.  

Experimentation using a database trained with the high-

resolution version of an image that is presented performs 

exceptionally well.  This, thus, demonstrates that the edge 

problem is not an issue with the approach (that is, the 

approach can produce a visually pleasing edge-area) but 

with the data that is stored during training.  Increasing the 

training set size (using images that have minimal 

correlation with the image to be presented) also 

demonstrates improvements, confirming this. 

4.2 Pixel Comparison Evaluation 

One of the most commonly used methods for evaluating 

super resolution is to compare the super-resolved image on 

a pixel-by-pixel basis to the original large-size image.  

This comparison averaged a 0.9% perfect match.  

However, given that the images are not black and white, but 

instead gray scale, it is not prudent to compare only perfect 

matches (as it is unlikely that a source pattern would have 

exactly the same shades of grey in pattern – the goal here is 

to get close).  When we apply an error margin of 10% of 

the color range, the match average jumps to 89.3%.  The 

visual difference of this 10% error margin is barely 

perceptible.  It may, for example, manifest itself as a 

slightly different shading of an individual’s face based on 

pattern matching of a lighter or darker skinned individual.  

However, similar effects could easily be caused by lighting 

in the location of photography or minor skin color change 

due to tanning, etc.   

4.3 Confidence Correlation Evaluation 

The evaluation technique that is of greatest interest to 

AI decision making, however, is confidence correlation.  

Confidence correlation compares each area of the image to 

the natural high-resolution image like in pixel comparison 

evaluation.  The error value resulting from this is then 

compared with the confidence value for the pixel produced 

for the confidence map (as previously described).  The 

 
Fig. 2 & 3.  Left: Enhanced Face Texture.  Right: Pixilation Around 
N
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confidence correlation, thus, indicates whether the 

confidence values should be trusted (while the confidence 

value indicates the accuracy of the super resolution process). 

Confidence correlation is calculated as: 
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where C is the confidence value from Eq. 2, E is the error 

discussed in section IV-B, S is a scaling constant and n is 

the number of observations that are being used to compute 

the confidence correlation value.  We, thus, end up with a 

scaled average correlation between the confidence and error 

value. 

Confidence correlation was calculated for three cases: 

high error, medium error and low error.  The confidence 

correlation values obtained through testing appear to be 

fairly consistent between the different error levels: 0.78, 

0.82 and 0.79 for high, medium and low error, respectively. 

5 SOURCES OF ERROR 

Several sources of possible error were considered.  
Like most super resolution research, the experimental setup 
for this research is somewhat contrived.   Images from 
prior facial recognition work were used to train and test the 
system.  The images were headshots against a quasi-
consistent background (though the actual color of the 
background in the images varied, likely due to the impact of 
lighting and using different cameras for different images).  
In each image, at least 25% of the image consisted of a 
lightly patterned background.  The presence of this 
background could potentially increase or decrease accuracy 
calculations (depending on whether the database contained 
an exact or very close match) significantly, because of its 
prevalence.  An additional test of two closely cropped face 
images was performed to assess the potential impact of this.  
One had a background color that was in the database and 
the other had a background color that the database was not 
trained with.   While the accuracy metric values differed 
from the values for presenting the image with the larger 
background area, they did not fall outside of the range of 
values generated for testing with backgrounds. 

6 CONCLUSION 

It appears that a training-driven approach to super-
resolution can produce acceptable results when the training 
and presented images are of similar objects.  This would 
tend to suggest that a general-purpose database could be 
made that would be able to provide suitable enhancement 
for a variety of object and background types and which 

could be supplemented (to provide greater accuracy) with 
domain-specific databases. 

When using a super-resolved image for AI decision-
making, the potential error that is inevitably introduced by 
the super resolution process must be considered.  The 
confidence map has been shown to provide a reasonable 
estimation of this error that can be considered by the AI as 
an estimation of the true error (based on comparing the 
actual high-resolution image to the super resolved one) 
which is, of course, not available in real world application. 

Several topics of future research are suggested from this 
study.  First, it would likely be possible to increase 
accuracy while reducing database size by storing difference 
patterns instead of gray scale values in the database.  
Future research could look at the feasibility of storing a 
pattern of delta-values from the mean-color-value of the 
image; [8] has looked at how patterns recur at different 
levels and thus it is reasonable to assume that they may 
recur in different shades as well.  Second, this same 
concept could be applied to color images (including the 
aforementioned change). Finally, it would be prudent to 
compare the accuracy of decision-making using a higher-
resolution super-resolved image with decision-making 
using a lower resolution image to determine the actual 
benefit of increasing image resolution. 
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