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Abstract: In microscopic image processing for analyzing biological objects, structural characters of objects such as symmetry
and direction can be used as a prior knowledge to improve the result. In this study, we incorporated filamentous character of
local structures of neurons into a statistical model of image patches so as to obtain an image processing method based on tensor
factorization with image patch rotation. Tensor factorization enabled us to incorporate correlation structure between neighboring
pixels, and patch rotation helped us obtain image bases that well reproduce filamentous structures of neurons. We applied
the proposed model to a microscopic image and found significant improvement in image restoration performance over existing
methods even with smaller number of bases.
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1 INTRODUCTION
Statistical modeling of image patches is a standard method

to extract local structural features in image processing [1].
Rectangular image patches are cut out from a target image
and regarded as random vector-valued samples. Statistical
modeling of vector-valued variables provides a general tool
for statistical feature extraction, unsupervised learning, and
noise reduction by regression, to various application fields,
such as natural image recognition, text recognition, and face
recognition [2]. On the other hand, such statistical meth-
ods may suffer from information loss due to conventional
transformation from rectangular image patches into vectors,
which would lead to deterioration of image restoration per-
formance. In this study, we try to reduce loss of structural
information in microscopic image processing, by introduc-
ing the following two strategies: to obtain direction of fore-
ground objects by fitting rotational image patches; and, to
handle each fitted image patch as a matrix (patch height �
patch width) rather than a vector.

2 NOTATIONS FOR TENSOR ANALYSIS
In this section, we introduce notations necessary to de-

scribe the idea of tensor factorization.

2.1 Tensor & its matricization

Let Y ∈ RI1×I2×···×IN be an an N -way tensor whose
real-valued element yi1i2···iN

∈ R is indexed by in ∈
1, 2, � � �, In for 1 � n � N . Each of I1, I2, � � �, IN ∈ N de-
notes the largest index number for the corresponding mode.
A zero-way tensor is represented by a scalar y, a one-way
tensor by a vector y, a two-way tensor by a matrix Y, and
a three or higher-way tensor by a general tensor Y. ||Y||2F

denotes squared Frobenius norm, which is a sum of squared
elements of the tensor Y.

To operate and illustrate a multi-way tensor, we may re-
arrange tensor elements to a matrix form, which is called
matricization. The mode-n matricization of a tensor Y re-
arranges the tensor elements as Y(n) ∈ RIn×(Mn), where
Mn = I1I2� � �In�1In+1� � �IN .

2.2 Tensor-matrix product
The mode-n product (n = 1, 2, � � �, N) of a tensor G ∈

RJ1×J2×···×JN and a matrix A ∈ RIn×Jn , Y = G�nA, is a
tensor Y ∈ RJ1×···×Jn−1×In×Jn+1×···×JN whose elements
are given by yj1j2···jn−1injn+1···jN

=
∑Jn

jn=1 gj1j2···JN
ainjn .

Multiplication of a tensor over all modes other
than one mode is denoted as G �−n {A} =
G�1A

(1) � � ��n−1A
(n−1)�n+1A

(n+1) � � ��N A
(N)

and
the resulting tensor has dimensionality I1 � � � � � In�1 �
Jn � In+1 � � � � � IN .

3 METHODS
In this section, we present our new image restoration

method based on tensor factorization and rotational patches.

3.1 Image restoration incorporating patch rotation
Our image restoration method is a modification of the ten-

sor factorization method proposed by Kim et al. [3]. Their
method consisted of two steps; a basis learning step and a
basis application step. We added a patch rotation process to
both of these steps in order to incorporate symmetric struc-
tural features of image patch bases.

In the basis learning step, first, an image patch tensor is
generated from an objective image; we obtain p samples of
m � m rectangular image patches from the full-size image;
here, a rectangular image patch is said a foreground one if
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Fig. 1: Template image patch set by hand (leftmost panel)
and its rotations (2...180). Foreground image patches before
(middle) and after (lower) the rotation process.

its central pixel is brighter than the pre-determined level, or a
background one otherwise. p samples of foreground patches
are arranged into an m � m � p three-way tensor, which is
called a train patch tensor. Background patches were omitted
in the following analysis. We calculate a basis tensor U ∈
Rm×m×K as a solution of the minimization problem:

U = arg min
(U,V)

||Y � U �3 V||2F , (1)

where V is a p � K mixing matrix such to allow the lin-
ear sum of K basis patches U(:, :, k)(k = 1, � � �,K) to well
approximate the train patch tensor Y; that is, the ith patch
Y(:, :, i) is well approximated by a linear sum of the ba-
sis patches

∑
k U(:, :, k)V(i, k) for all i. The number K

(< p) of basis patches should be set appropriately by hand.
This minimization problem is solved by three-way tensor fac-
torization and we applied higer order orthogonal iteration
(HOOI) algorithm for it, which is explained in detail in sec-
tion 3.2.

In the basis application process, we restore a noisy image
patch Y and achieve a restored image patch Ŷ by applying
the basis tensor U that was obtained in the basis learning
step. We assume that an image patch Y is expressed by linear
combination of K basis patches as follows.

Y = U �3 v + E

=
K∑

k=1

U(:, :, k)vk + E, (2)

where U(:, :, k) is an m � m matrix that represents the kth
basis patch image, v is K-dimensional weight vector, and E
is an m � m residual matrix. We calculate the weight vector
v̂T = (v̂1, � � �, v̂K) that minimizes the residual norm ||E||2F.
Finally, we obtain the restored image patch Ŷ = U�3 v̂.
The entire image is restored by applying the above restora-
tion process for all patches in the image.

Algorithm HOOI for three-way tensor factorization

Input: Y ∈ RI1×I2×I3

Output: n th matrix A(n) ∈ RIn×Jn (n = 1, 2, 3) and
a core tensor G ∈ RJ1×J2×J3

such that
∣∣∣∣∣∣Y � Ŷ

∣∣∣∣∣∣2
F

is minimized.
1: begin
2: random initialization for all matrices A(n)

3: repeat
4: for n = 1 to 3 do
5: W(n) = Y ��n {A(n)T }
6: [A(n),Σ(n),B(n)] = svds(W(n)

(n), Jn)
7: end for
8: until a stopping criterion is realized
9: G = Y �1 A(1)T �2 A(2)T �3 A(3)T

10: end

In this study, we introduce a patch rotation process in or-
der to incorporate symmetry in the objective cell structures.
First, we prepared a template image (the leftmost panel in
Fig. 1), which was set manually to represent a local neu-
ral filamentous structure in the vertical direction. Next, we
prepared a set of its rotated image templates with rotation
angles, 1, 2, ..., 180 degree (Fig. 1). In the patch rotation pro-
cess, we fit each sampled patch to the vertical template in
the following manner; calculate correlation coefficients be-
tween the sampled patch and the rotated templates of 180
rotation angles, determine the best rotation angle that maxi-
mizes the correlation, and rotate the sampled patch into the
inverse direction with the determined rotation angle. In the
above procedure, we rotated the template patch 180 times,
rather than the sampled patch, in order to reduce the num-
ber of total number of rotation operation. Fig. 1 shows some
examples of image patches before (middle) and after (lower)
the patch rotation.

We applied the patch rotation process to the both of basis
learning and basis application steps. Before the basis learn-
ing step, we align all image patches to fit the template image,
and gather the rotated patches to construct a three-way patch
tensor for the basis learning. Before the basis application
step, we align each image patch to fit the template image,
and restore the central pixel of the result of an application of
the base.

Owing to the patch rotation, we can omit trivial varia-
tions of foreground patch images that can be generated by
the rotation of rectangular spatial cutting windows, and, con-
sequently, we expect that the set of bases reflect variations
among neuronal local structures.

3.2 HOOI algorithm for basis learning step
The HOOI algorithm for the three-way tensor factoriza-

tion in the basis learning step is based on an iterative Al-
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Fig. 2: An original microscopic image (size: 300 � 300 pix-
els) taken from www.greenspine.ca (Paul De Koninck,
Laval University) (left) and a noisy image (right).

ternative Least Squares (ALS) algorithm. In each iteration
of ALS, one basis is updated to minimize the residual er-
ror while keeping the others fixed, and finally we seek a (lo-
cally) optimal solution [4]. An extension of ALS for tensor
factorization, HOOI was first introduced by De Lathauwer,
De Moor and Vandewalle [4] and recently extended and im-
plemented by Kolda and Bader in their MATLAB Tensor
Toolbox[5]. We used this toolbox for tensor factorization in
this study.

The HOOI factorizes the m � m � p patch tensor Y into
an m�m�K core tensor G and three matrices A(1), A(2),
and A(3),

Y = G �1 A(1) �2 A(2) �3 A(3). (3)

We calculate the basis tensor that is defined in Eq. (1), U ∈
Rm×m×K , by using the result of HOOI as follows, U =
G �1 A(1) �2 A(2).

In the HOOI algorithm, svds(W(n)
(n)) denotes a singu-

lar value decomposition procedure that decomposes a ma-
trix like W(n)

(n) = A(n)Σ(n)B(n)T . The cost function∣∣∣∣∣∣Y � Ŷ
∣∣∣∣∣∣2

F
is monitored so that the algorithm is terminated

when its difference from that in the last step is smaller than a
constant (‘ a stopping criterion’on line 8 in the algorithm).

3.3 Image restoration by matrix factorization
We compared the proposed method with simple matrix

factorization and two-way tensor factorization. In the case
of two-way tensor factorization, the train patch tensor is ar-
ranged to an M � p matrix, where the column size M = m2

corresponds to the number of pixels in an m�m image patch.
The M -dimensional patch vector y is represented by a lin-
ear combination of K(� p) bases. y =

∑K
k=1 vkuk + ε,

where uk is the kth M -dimensional basis vector, vk is a
scalar weight of the kth basis, and ε is an M -dimensional
residual vector. Let U = (u1, � � �,uK) be an M �K matrix
that gathers all basis vectors uk. In the basis learning step,
we obtain a basis matrix U that minimizes ||ε||2F, and, in the
basis application step, we calculate v̂ and ŷ = Uv̂.

(a) (b)

(c) (d)

Fig. 3: Restoration by matrix factorization (a) without patch
rotation (K = 64) and with patch rotation (K = 52).
Restoration by tensor factorization (c) without patch rotation
(K = 52) and(d) with patch rotation (K = 46).

4 RESULTS
Image restoration performance was compared between

tensor factorization and matrix factorization, and between
with and without the patch rotation process. A microscopic
image of size 300� 300 pixels was clipped from the original
image (size: 634 � 800 pixels) of a neuronal network, regis-
tered on www.greenspine.ca (Paul De Koninck, Laval
University) (Fig. 2, left). To examine the restoration perfor-
mance, we artificially added white Gaussian noise (variance
= 0.03) to the neuronal image (Fig. 2, right). Since we know
the original image, we can evaluate the image restoration per-
formance by calculating the root mean squared error (RMSE)
of pixel brightness between the original and restored images.
Since the performance depends on the number of bases, K,
the RMSE was calculated with various K values for each
method. For the basis learning, we extracted about 17,000
image patches of size 13 � 13 pixels from the original im-
age before noise addition. Although the original image is not
available in the actual image restoration application, we here
assumed the basis learning has been accomplished by using
clear images prior to the application of our image restoration
method. Other possible procedure would be to iterate the
basis learning step and image restoration by using the same
(possibly noisy) images.

The image restoration results are shown in Fig. 3. The
image restored by the tensor factorization with patch rotation
obviously exhibited finer fiber structures than those by other
methods. Such good restoration performance of the proposed
method can be further seen in the numerical results summa-
rized in Fig. 4. Since the performance was largely depen-

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12), 
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 904



Fig. 4: Comparison of image restoration performance. Hor-
izontal and vertical axes denote the number of bases (K)
and the root mean squared restoration error (RMSE), respec-
tively. Solid and chained lines denote the image restoration
with and without image patch rotation process, respectively.
Thick and thin lines denote the image restoration by means
of three-way tensor factorization and matrix factorization, re-
spectively. Red point denotes the best setting of K for each
case.

dent on the number of bases, K, we here examined various
K values. Although the RMSE of each method became the
smallest with an appropriate setting of K, with the best set-
ting being dependent on the method, the proposed method,
the tensor factorization with patch rotation, showed the least
RMSE value in every setting. In addition, tensor factorization
(TF) showed better results that matrix factorization (MF),
even though the former employed a smaller K value than
the latter.

The advantage of the patch rotation was obvious espe-
cially when the number of bases was small. Table 1 shows
the RMSE with the best setting of K for various noise levels
added to the original image; our proposed method showed
the best restoration performance with a smaller number of
bases in all cases.

5 CONCLUDING REMARKS
In this study, we proposed an image restoration method

based on the three-way tensor factorization of rotated im-
age patches, which is suitable for restoration of micro-
scopic images of biological targets such as neuronal net-
works. In the simulation experiment using a real image of
neuronal network, we found significant performance gain in
image restoration due to the two important ingredients of our
method, tensor factorization and image patch rotation.

Fluorescence microscopy has a dilemma that increase in
the frame rate suffers from larger shot noise, while decrease

Table 1: RMSE comparison for various noise levels added to
the original image.

(a) variance = 0.01
RMSE MF TF

without rotation 18.27 (K = 70) 17.48 (K = 64)
with rotation 17.28 (K = 64) 16.42 (K = 55)

(b) variance = 0.03
RMSE MF TF

without rotation 27.64 (K = 64) 26.09 (K = 52)
with rotation 25.51 (K = 52) 24.21 (K = 46)

leads to the lack of information. Thus, a good image restora-
tion technique is important for improving the data acquisition
efficacy. For example, if we can restore low resolution im-
ages by utilizing basis images created from other high reso-
lution images, the original low resolution images are restored
cheaply in a software manner. Applications to 3D images and
movies would be important future extensions, and capturing
various finer structures of neuronal networks by further mod-
ifying our statistical model will also be promising.
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