
A neutral evolutionary path-planner
Eivind Samuelsen, Kyrre Harald Glette, and Kazi Shah Nawaz Ripon

Department of Informatics, University of Oslo, Norway
{eivinsam,kyrrehg,ksripon}@ifi.uio.no

Abstract: This paper explores methods for path-planning using evolutionary algorithms. Inspired by research on neutral muta-
tions in evolutionary algorithms, we propose an algorithm based on the idea of introducing redundancy in the solutions, adding
explicit neutrality to the evolutionary system. The algorithm introduce explicit neutrality by evolving roadmaps rather than single
paths. Since some of the mutation and crossover operators used in conventional evolutionary path-planners are not well suited
for this representation, appropriate evolutionary operators will also be explored. The performance of this algorithm on shortest
distance path planning problems is compared to a known good genetic algorithm in three different static environments.

Keywords: genetic algorithm, neutrality, path-planning, roadmap

1 INTRODUCTION

Path planning is the problem of finding an optimal
obstacle-free path through an environment. In a shortest dis-
tance problem, the optimal path is the one going from a start
point to a goal point in the shortest possible distance trav-
elled. Many methods have been proposed for solving this op-
timization problem. They all have certain trade-offs between
planning time, robustness, requirements on environment rep-
resentation and so on. An overview of the most common
no-evolutionary methods can be found in [1].

Probabilistic roadmaps (PRMs) are one of the more com-
mon methods in path planning. A PRM samples random
points in order to simplify the problem and scale well with
environment dimensionality. However, it will seldom find
optimal solutions unless the amount of samples taken is made
impractically large. They also have problems with finding so-
lutions at all in narrow passages and maze-like environments,
a problem that to some extent can be remedied by sampling
adaptively [2].

Several path-planning methods using evolutionary algo-
rithms (EAs) have also been proposed. A straightforward
approach to the shortest distance problem is presented in [3].
Once a good set of solutions has been found by an EA path-
planner, it can easily adapt to changes in the environment
simply by running the a few more iterations of the algorithm
on the updated environment data. However, finding a good
set of initial solutions from a set of random solutions can take
some time. A remedy for this is to initialize the population
with results from a PRM planner has been proposed in [4].

There has recently been some interest in EAs using neu-
trality and neutral mutations. Neutrality is having redun-
dancy or extra information in the chromosomes so that they
can change in ways that do not affect fitness. It is claimed
that this can be greatly beneficial to EAs, making them both
converge faster to the optimum and also escape local optima

more easily. This is inspired by similar theories in biologi-
cal evolution and some experimental findings, though many
of these findings are considered inconclusive by others. A
summary of this research can be found in [5].

Although the effects of neutrality in EAs in general are
still inconclusive, it is an interesting avenue to explore in
solving path-planning problems. One such method is pro-
posed in this paper. Instead of trying to evolve good paths
directly, this method tries to evolve good roadmaps for find-
ing paths. We will rank the roadmaps only by the best path
found in them by a graph traversal algorithm. Since this rank-
ing does not consider the points in the roadmap that are not
part of the resulting path it has explicit neutrality.

2 PROPOSED METHOD
Starting out with a set of PRMs as initial population, our

algorithm evolves these roadmaps over many generations.
We call this method a roadmap evolver. Roadmaps well
suited to find a good path are more likely to survive to the
next generation. The nodes that are not on a roadmap’s best
path can mutate without affecting the roadmap’s fitness. This
can enable the population to escape local optima more easily.

2.1 Representation and evaluation function
Each chromosome is a set of floating-point vectors that

together with the start point and the goal constitute the nodes,
or milestones, of a roadmap. If one can draw a straight line
between two nodes without intersecting any obstacle, they
are connected. A graph traversal algorithm is run to evaluate
the chromosomes, finding the best path through it from the
start to the goal node.

When an optimal path through the roadmap has been
found, the fitness of that path is taken as the fitness of the
roadmap. In the experiments done in this paper the path’s
are optimized for the shortest path. So the fitness of the path

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12), 
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 851



is the path’s curve length, and the graph traversal is done by
A*.

Since not all nodes are necessarily visited during the
traversal, the connectivity of the roadmap graph is done dy-
namically during the graph traversal in order to reduce the
number of connectivity checks needed. Still, in general,
O(n2) connectivity checks will be needed in the traversal,
where n is the number of nodes in the roadmap.

2.2 Evolutionary operators
The algorithm proposed has a single crossover operator

and three mutation operators: nudge, insert and reduce size.
In order to emphasize average-sized children we use a

crossover operator similar to uniform crossover: First each
point in parent A is given to either child A or child B with
equal probability. Then the points in parent B are distributed
in the same way. The size of each child is the sum of n coin
flips, so it has a binominal distribution. The chromosomes
are sets of points and thus inherently unordered. Therefore,
there is no need to try to maintain any ordering.

The nudge mutation goes through all the points in a chro-
mosome. Each point has a probability Pnudge of being dis-
placed a small distance in some random direction, but only if
that displacement does not move the point into or over an ob-
stacle: A normal-distributed vector is added to the point if the
straight line between the original point and the point plus the
random vector is obstacle-free. If this fails, it is reattempted
up to 6 times with a new random vector with increasingly
narrow normal distribution. If all attempts fail that point is
left unchanged.

The insert mutation tries to add a single point to an in-
dividual. A candidate point is generated randomly with uni-
form probability within the bounds of the environment. If the
candidate is obstructed, a short random walk is performed
until an unobstructed point is found, or a maximum of three
steps are taken. If the candidate is still obstructed, we try
it up to 5 more times with different random start points. If
no feasible candidate has been found, the operator leaves the
individual unchanged.

The reduce size mutation goes through all the points in
a chromosome and removes that point with a probability
Premove . Thus, on average n × Premove points are removed
from the set, where n is the original size of the set.

2.3 Initial population and evolutionary process
The population is initialized with N PRMs with an aver-

age of Ng non-obstructed nodes in uniform distribution over
the environment. If none of the roadmaps give a feasible path
from start to a goal then Ng is increased by a constant and N

new PRMs are created. This is repeated until at least one
initial feasible solution is found.

Each generation is generated as follows: N new individu-
als are created by crossover. The parents for each crossover

Table 1: Average run-time, including initialization
Environment Reference

path-planner
(per iteration)

Roadmap evolver
(per iteration)

“Rocks” 19.0s (10.6ms) 78.3s (174.0ms)
“House” 49.0s (27.2ms) 163.6s (363.6ms)
“Spirals” 25.7s (14.3ms) 131.0s (291.1ms)

operation are selected by simple tournament selection with
a tournament size of 2. This is repeated until two different
parents have been selected.

All the new individuals are then subjected to mutation.
The nudge mutation is performed once, then the insert muta-
tion is performed once with probability Pinsert . Finally the
reduce size mutation is performed. After that, new popula-
tion is merged with the old. To reduce the population size
back to normal, N one-round tournaments are held, and the
losing individuals are removed.

Each new individual has Pinsert points added on average,
while n×Premove points are removed. This helps the average
chromosome size to stay relatively stable, while allowing for
variations in order to adapt to different environments.

3 RESULTS AND DISCUSSION
The algorithm has been tested against a reference path-

planner in different environments. The reference algorithm
used is similar to the one described in [4], differing mainly
in the parameters and selection operators used. It is run with
a population size of 40 and a tournament-based selection. It
should be noted that the parameters and implementation of
the reference algorithm are not fine-tuned or optimized, and
can therefore only serve as a general guideline to the perfor-
mance of a reasonably robust evolutionary path-planner.

The roadmap evolver was run with a population size of 35
and an average initial number of nodes per chromosome of
35 or more. Mutation parameters were set to Pnudge = 0.2,
Pinsert = 0.4 and Premove = 0.05.

Three different environments, shown in Fig.1 are tested.
Each environment has different characteristics: The “rocky”
environment consists of a number of scattered convex shapes,
and has a large number of intersecting local optima. The sec-
ond environment imitates the interior of a single-floor home,
and has wall- and corridor-like obstacles, leading to a few,
far-apart local optima. The third environment contains two
spiral structures and has only one hard-to-find optimum.

The result of 100 runs of each algorithm in each environ-
ment is shown in Fig.2. The reference algorithm is run for
1800 iterations, while the roadmap evolver is run for 450 iter-
ations. The large difference in number of iterations is due to
differences in run-time per iteration and to differences in how

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12), 
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 852



start
goal

(a) The “rocks” environment

start

goal

(b) The “house” environment

goal

start

(c) The “spirals” environment

Figure 1: The different environments tested

quickly the algorithms converge. The average run-times are
shown in Table 1. The average iteration time of the roadmap
evolver is more than ten times that of the reference algorithm.

The reference algorithm shows very good performance in
the “house” environment, with a good start and little varia-
tion. In “rocks” it converges quickly, but seems to get stuck in
local optima, because the variation between runs stays high.
In the last environment it closes in on the optimum with low
variation, but at a very slow pace.

The roadmap evolver has good performance in the “rocks”
environment, converging quickly towards a near-optimal so-
lution quickly and with little variation between runs. In the
other two environments it closes in on the optimal solution at
a good average pace, but the pace is very uneven, with large
variations in fitness between runs for many generations.

Compared to the reference algorithm in terms of genera-
tions only, the roadmap evolver performs as good or better
in both “rocks” and “spirals” environments, but needs more
generations to reliably produce near-optimal solutions in the
“house” environment. In “rocks” it seems to avoid local op-
tima better, while in “house” it shows signs of jumping out
of local optima it have been temporarily stuck in. Note that
both algorithms fail to ever find the globally optimal path in
the “rocks” environment.

The good performance of the reference algorithm on
“house” might be explained by the way the populations are
initialized - the reference algorithm guarantees N different
feasible solutions, while the roadmap evolver only guaran-
tees at least one.

4 CONCLUSION
In this paper, we proposed a path-planning method using a

genetic algorithm that has explicit neutrality. The algorithm
was compared to an existing genetic path-planning algorithm
that has no neutrality. The proposed algorithm closes in on
the optimal solution in comparatively few generations, and
shows signs of both avoidance and escape of local minima in

a small selection of tested environments. However, run-time
performance is poor, most likely because of comparatively
high complexity in the fitness function.

The algorithm did display properties expected of a neutral
evolutionary system. For future work it would be of interest
to examine whether these properties are displayed in other
situations too, such as dynamic or partially unknown environ-
ments, or path-planning problems with multiple objectives.
Initializing the population in the same way as the reference
algorithm might increase performance in early generations.
Another possibility is developing other different and possi-
bly more efficient neutral path-planning EAs and examine if
the same properties appear in them.

REFERENCES
[1] S. LaValle, Planning algorithms. Cambridge Univ Pr,

2006.

[2] V. Boor, M. Overmars, and A. van der Stappen, “The
gaussian sampling strategy for probabilistic roadmap
planners,” in Robotics and Automation, 1999. Proceed-
ings. 1999 IEEE International Conference on, vol. 2,
pp. 1018 –1023 vol.2, 1999.

[3] H. Lin, J. Xiao, and Z. Michalewicz, “Evolutionary algo-
rithm for path planning in mobile robot environment,” in
Evolutionary Computation, 1994. IEEE World Congress
on Computational Intelligence., Proceedings of the First
IEEE Conference on, pp. 211–216, IEEE, 1994.

[4] M. Naderan-Tahan and M. Manzuri-Shalmani, “Efficient
and safe path planning for a mobile robot using genetic
algorithm,” in Evolutionary Computation, 2009. CEC
’09. IEEE Congress on, pp. 2091 –2097, may 2009.

[5] E. Galván-López, R. Poli, A. Kattan, M. O’Neill, and
A. Brabazon, “Neutrality in evolutionary algorithms...
what do we know?,” Evolving Systems, vol. 2, pp. 145–
163, 2011. 10.1007/s12530-011-9030-5.

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12), 
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 853



0 500 1000 1500
1

1.05

1.1

1.15

1.2

Generation

F
itn

es
s

 

 
Best individual − average run ± σ
Best individual − average run
Best individual − best run
Average individual − average run

(a) “Rocks” environment - reference path-planner

0 100 200 300 400
1

1.05

1.1

1.15

1.2

Generation

F
itn

es
s

 

 
Best individual − average run ± σ
Best individual − average run
Best individual − best run
Average individual − average run
Reference algorithm − 
best individual, average run

(b) “Rocks” environment - roadmap evolver

0 500 1000 1500
1

1.1

1.2

1.3

1.4

Generation

F
itn

es
s

 

 
Best individual − average run ± σ
Best individual − average run
Best individual − best run
Average individual − average run

(c) “House” environment - reference path-planner

0 100 200 300 400
1

1.1

1.2

1.3

1.4

Generation

F
itn

es
s

 

 
Best individual − average run ± σ
Best individual − average run
Best individual − best run
Average individual − average run
Reference algorithm − 
best individual, average run

(d) “House” environment - roadmap evolver

0 500 1000 1500
1

1.1

1.2

1.3

1.4

Generation

F
itn

es
s

 

 
Best individual − average run ± σ
Best individual − average run
Best individual − best run
Average individual − average run

(e) “Spirals” environment - reference path-planner

0 100 200 300 400
1

1.1

1.2

1.3

1.4

Generation

F
itn

es
s

 

 
Best individual − average run ± σ
Best individual − average run
Best individual − best run
Average individual − average run
Reference algorithm − 
best individual, average run

(f) “Spirals” environment - roadmap evolver

Figure 2: Fitness development for each algorithm in each environment. All fitness values are relative to the optimal solution
as found by the vismap algorithm. The blue line is the average best fitness for each run. The light grey area around it signifies
one standard deviation from that average. The red line is the average fitness of all feasible solutions in the current generation,
averaged over all runs. The cyan line in the roadmap evolver plots shows the average best fitness for the reference algorithm for
the same iterations.

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12), 
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 854




