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Abstract: In this paper a flight evolutionary simulation of an artificial flying creature (AFC) is described. The three-

dimensional motion of the AFC is calculated by the physical engine PhysX and a numerical expression of the simple drag force. 

The AFC is controlled by an artificial neural network (ANN). The three-layered ANN which has nine input neurons and four 

output neurons is used for a simulation of the AFC. To evolve ANNs and to have the AFC flight suitably for given target points, 

a particle swarm optimization (PSO) optimizes parameters of ANNs. The results of evolutionary simulation show that the 

ability of generalization does not always increase as evolution progresses, and it depends on given tasks of the AFC. It is also 

shown that the number of situations which the AFC goes through has positive correlation with the ability of generalization.  
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1 INTRODUCTION 

Flight is a complex behavior. A sleeping dog can stay on 

the ground, while a bird not moving its wings can not stay 

in the sky. Ants can only move on surfaces, which are 

commonly regarded as the two-dimensional coordinates. 

On the other hand butterflies can fly freely in the air, the 

three-dimensional space. So it is interesting to understand 

the mechanism of flight, however, there are few researches 

on them.  

Compared with flight, walking, jumping and swimming 

have been studied by many researchers. Sims [1] simulates 

evolution of the artificial virtual creatures and shows that 

creatures can acquire morphology and controllers by 

evolution with the physical interactions. Lipson et al [2]. 

and Rieffel et al [3]. also show similar results, however, it is 

a new point that Rieffel uses PhysX, one of physical 

engines, for calculating motions. In the field of bipedal 

walking, Allen et al [4]. and Reil et al [5]. show that bipedal 

robots can jump or walk through evolution. Wu et al [6]. 

proposes a bird model for computer graphics. This is one of 

a few studies on flight behaviors, although the evolutionary 

acquisition of flight is not done in it.  

The objective of this study is to show a process in the 

evolution of flight behavior. In this paper, we describe a 

numerical simulation of flight evolution by the use of 

PhysX and drag force calculation. Although this method 

can calculate the motion faster, it is approximation and not 

completely accurate. However, we are focusing on the 

evolutionary process, and we do not deal with verification 

of the accuracy by experiments in the real world.  

The method used for simulation is described in Section 

Two. Section Three explains a model of the artificial flying 

creature and how to evolve its controller by neuro-evolution. 

Section Four shows the evolutionary simulation and its 

result. Finally, the conclusion is described in Section Five.  

 

2 COMPUTATIONAL METHOD 

In order to calculate motion of the artificial flying 

creatures, we basically use a physical engine. Because it 

does not support the force which acts objects in a fluid, we 

use the simple drag force additionally.  

2.1 Physical engine 

The physical engine is software used for calculation of 

the multi body dynamics. The most common purpose of the 

physical engine is to improve reality in three-dimensional 

computer graphics. In addition, various types of physical 

simulations can be done easily by the physical engine, so it 

is used for researches on artificial-life in recent years.  

The physical engine can calculate a motion of the 

complex object which consists of some objects connected 

by joints. It can also calculate effects of collision and 

friction and add force to objects. Since these calculations 

are automatically performed, the physical engine is 

regarded as a black box.  

2.2 Drag force 

Objects in a fluid are affected by the fluid via surfaces 

of the objects. The physical engine does not support this 

effect of the fluid yet. We use the simple drag force in order 

to implement the effect in the physical engine. The drag 

force D is given by 
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where ρ, Cd, A, and v are fluid density, a drag coefficient, an 
area of a minute surface, and velocity of the surface.  

Although this drag force is a kind of the quasi-steady 

fluid force and a rough approximation, it is fast and easily 

combined with the physical engine.  

 

3 MODEL OF THE CREATURE 

The artificial flying creature (AFC) is controlled by an 

artificial neural network (ANN). To optimize parameters of 

ANNs, we use particle swarm optimization (PSO).  

3.1 Artificial flying creature (AFC) 

3.1.1 Structure 

The AFC in Fig. 1. is similar to a bird. It is composed of 

four parts: a body, a tail, and two wings. The two wings are 

rotate on the axes eR1 and eL1, and on the axes eR2 and eL1. 

The tail rotates on the axis eT1, and on the axis eT2. Each 

rotation is controlled by an output signal of an ANN. To 

simplify control of the AFC, rotations of two wings are 

perfectly symmetrical.  

3.1.2 Sensors 

The AFC has some virtual sensors. They can measure 

states of the AFC, and perceive cognitive information. They 

are used as input signals of ANNs.  

3.2 Artificial neural network (ANN) 

The AFC has a three layered ANN as a controller. The 

ANN receives eight input signals from virtual sensors: the 

pitch and roll angles of the AFC, the forward velocity, the 

relative angles on the axes eR1 and eR2, the angular velocity 

on the axis eR1, and the angles relative to a target point. 

Then the ANN calculates four output signals: the angles on 

the axes eR1, eR2, eT1, and eT2.  

3.3 Particle swarm optimization (PSO) 

In order to optimize ANNs and control the AFC suitably, 

we use PSO. The PSO is one of the swarm intelligence and 

has strong convergence. Each position of a particle 

represents the parameters of an ANN. The position of the 

particle i at search step k+1, p
i
k+1, is calculated by  
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where w, c1, and c2 are coefficients, r1 and r2 are uniform 

random numbers from 0 to 1. pd is the best position of the 

particle i, and pg is the best of all particles.  
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Fig. 1. The artificial flying creature (AFC) 

 

4 EVOLUTION OF FLIGHT TO TARGETS 

The AFC evolves to fly to a given target by PSO. We 

use two different conditions in evolution of the AFC, and 

then we analyze differences of the process in evolution and 

the evolved flight to given targets.  

4.1 Evolutionary conditions 

4.1.1 Common conditions 

The AFC is initially placed on the point of (0,200,0) in a 

static state. Then the AFC starts flying to a target. If the 

AFC satisfies conditions of termination, the next flight to 

another target starts, or the next AFC starts flying. The time 

of numerical integration in PhysX is 1/100 seconds.  

We use w = 0.4 and c1 = c2 = 2.0 as parameters of PSO. 

We also use 60 particles, and 2000 search steps of PSO.  

4.1.2 Conditions in go-and-stay 

In the evolution of “go-and-stay”, the AFC evolves to 

go to only one target given by (200,300,200), and stay there. 

Each AFC flies for 30 seconds, and then it is evaluated by  
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where t and dt are a time step and a distance from the AFC 

to the target at time step t.  

4.1.3 Conditions in 4-trials 

In the evolution of “4-trials”, the AFC evolves to go to 

the four targets given by (200,300,200), (-200,100,200),  

(-200,300,-200), and (200,100,-200). It does not have to 

stay around targets. Each AFC flies to a target for 30 

seconds at most. If it is situated within 1m from the target, 

it is considered that the AFC arrives at the target and the 

flight is terminated. It repeats the flight for a different target 

four times, and then each is evaluated by  
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where s, Ts, and ds,t are the number of trials, a time to arrive 

at a target in trial s, and a distance from the AFC to the 

target of trial s at time step t.  
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4.2 Results of evolution 

4.2.1 Changing evaluation in evolution 

We have done evolutionary simulations 10 times for go-

and-stay and 4-trials. Fig. 2. shows changing evaluations at 

each search step. The result that differences between the 

maximum values and average values are larger than one 

between the minimum values and average values shows 

high variance of these evolutionary simulations.  

4.2.2 Evolved flights 

Fig. 3. shows the trajectory and snapshot at every 

second of the most successful flight given by go-and-stay 

evolution. In this flight, the AFC goes to the target quickly 

and flies around the target. This satisfies the aim of “go-

and-stay”. The number of satisfactory flights, however, is 

only three. The other flights satisfy only the aim of “go”, do 

not satisfy the aim of “stay”.  

On the other hand, four different patterns of flight are 

given by 4-trials evolution. The worst flight is to go back 

and the AFC falls down. The next worse flight is to go to 

only one or two targets and the AFC falls down. Two better 

flights are interesting: one gets low evaluation but fully 

satisfies “go-and-stay”, and the other obtains high 

evaluation but the AFC falls down after arrival. The 

arriving rate for (200,300,200), (-200,100,200), (-200,300, 

-200), and (200,100,-200) are 10%, 40%, 0%, and 70% in 

ten evolutionary simulations. In even the best flight, the 

AFC arrives at only two targets given by (-200,100,200) 

and (200,100,-200).  

 

5 ANALYSYS OF EVOLUTIONARY PROCESS 

ANNs have properties of generalization, which is the 

ability to learn many things by little learning. In the case of 

the AFC, we have defined the ability of generalization as 

the ability to reach the targets which are not related to the 

evaluation of the AFC, and then tested the change of the 

ability of generalization in evolution.  

For tests of generalization, 64 target points are set: 32 

points are located on circle-1, and the 32 other points are 

located on circle-2. The radiuses of circle-1 and circle-2 

are 2200 , and the centers of circle-1 and circle-2 are the 

points of (0,100,0) and (0,300,0). The length for judgment 

of arrival is 10m, which is larger than 1m in evolution.  

Fig. 4. shows the average values of the successful rate 

of arrival for 64 targets in evolution. The rate of “4-trials” 

does not decrease as evolution progresses at least, while 

that of “go-and-stay” obviously decreases after 500 search 

steps. This result shows that the evolutionary conditions in 

go-and-stay are not suitable for increasing generalization.  
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Fig. 2. The change of evaluations in evolution 

 

 

Fig. 3. The most successful flight of go-and-stay 
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Fig. 4. The successful rate of arrival for 64 targets 

 

We also have counted the “experienced target angles” in 

evolution of go-and-stay. It is the number of appearing sets 

of the angles relative to the target in flight. Angles are 

discretized into integers, and the total number of sets is 

360° × 360° = 129600.  

Fig. 5. shows the relations between the average values 

of the experienced target angles and the rate of arrival about 

go-and-stay, and Fig. 6. shows one between the average 

evaluation and the rate of arrival. Although Fig. 5. shows 

the relation of monotonic increase, so does not Fig. 6. This 

result leads us to the idea that increasing the experienced 

target angles may bring higher successful rate of arrival.  

 

6 EVOLUTION USING TARGET ANGLES 

To verify the given hypothesis, we additionally simulate 

the evolution of the AFC with “experienced target angles”. 

The evolutionary conditions are all the same with that in the 

evolution of “go-and-stay” but evaluation. The evaluation 
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Fig. 5. The relation between the experienced target angles 

and the rate of arrival in evolution of go-and-stay 
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Fig. 7. The change of evaluations in new experiment 
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where a is the number of experienced target angles of the 

AFC. In short, the AFC which has both the ability of “go-

and-stay” and more experiences survives by this evaluation.  

Fig. 7. shows average evaluations at each search step 

given by 10 evolutionary simulations. A high variance 

between each evolution is similar to one of go-and-stay.  

Fig. 8. shows the average values of the successful rate 

of arrival for 64 targets in evolution. The new experiment 

brings higher rates of arrival at later search steps, and they 

roughly show the relation of monotonic increase. This 

result gives support to our hypothesis.  

 

7 CONCLUSION 

We have simulated the evolution of the AFC by using 

PhysX and the drag force calculation. According to two 

evolutionary conditions, “go-and-stay” and “4-trials”, there 

are some differences in both the evolved flights and the 

evolutionary processes. A difference in the successful rate 

of arrival for 64 targets is the most essential: it increases 

monotonically in the case of 4-trials, while it decreases as 

evolution progresses in the case of go-and-stay.  

A positive correlation between the rate of arrival and the  
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Fig. 6. The relation between the evaluation and the rate of 

 arrival in evolution of go-and-stay 
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Fig. 8. The successful rate of arrival for 64 targets 

 

“experienced target angles” suggests that many experiences 

about angles for targets keep increasing the rate. The new 

evolution using experienced target angles verifies this 

hypothesis, and it also shows that indirect factors influence 

the ability of generalization in evolution. It is a future work 

to examine whether our theory applies to other cases or not.  
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