
Multi-Objective Optimal Path Selection in the Electric Vehicles
Umair F. Siddiqi1, Yoichi Shiraichi1, and Sadiq M. Sait2

1 Department of Production Science & Technology, Gunma University, Ota, Japan
2 Department of Computer Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia

(Tel & Fax: +81-276-50-2532)

({umair, siraisi}@emb.cs.gunma-u.ac.jp, sadiq@kfupm.edu.sa)

Abstract: Car navigation systems of the modern vehicles are equipped with an optimal path selection (OPS) unit. The OPS unit

is responsible for finding the shortest paths between any source and destination nodes in the road network. In Electric Vehicles

(EVs), the purpose of the OPS unit is to find multi-objective shortest paths (MOSP) w.r.t.: (i) Recharging Time, (ii) Distance,

and (iii) Travelling Time. This work presents a memory efficient Simulated Evolution (SimE) based algorithm for solving the

MOSP problem in EVs. The proposed algorithm uses innovative representation of the solution, and problem-specific goodness

and allocation operations. Two different techinques for selecting the recharging stations are also proposed. The performance of

the proposed algorithm is compared with NSGA-II, which is a popular population based heuristic for solving the multi-objective

optimization problem. The comparsion results show that the proposed algorithm achieves the performance equal to NSGA-II

while it requires 2.22 times lesser memory than any population based heuristic.

Keywords: Multi-Objective Optimization, Electric Vehicles, Simulated Evolution

1 INTRODUCTION

Car navigation systems of the modern vehicles are

equipped with an optimal path selection unit. The optimal

path selection unit is responsible for finding the shortest paths

between any source and destination nodes in a road network.

The optimization objectives in the internal combustion en-

gine (ICE) based vehicles are: minimizing the distance, trav-

elling time, traffic, etc. The Electric Vehicles (EVs) are also

gaining popularity [1]. The optimal path selection in EVs

should include minimization of the recharging time. The

recharging time of the EVs can generally vary from 10 min-

utes to 30 minutes and therefore, it is an important factor to

be considered in optimal path selection.

The main obstacles in the popularity of the EVs are: (i)

Limited battery life, the EVs can travel until the time dura-

tion which is equal to the time limit of their batteries without

recharging. A general value for the time limit is 2 hours.

However, the time limits of the EVs are very small as com-

pared to the ICE based vehicles. (ii) Lack of the infras-

tructure for the recharging stations. The recharging stations

should be placed at regular intervals to ensure that the EVs

can travel without any recharging problem. (iii) The recharg-

ing time of the EVs is also important. The recharging of

the EVs should be performed in minimum possible time like

10 minutes. Many researchers have investigated the feasi-

bility and positioning of the recharging stations [1, 2, 3, 4].

The results of the previous research showed that portable or

fixed recharging stations could be placed at suitable places

along the road, which ensured that the majority of the EVs

could travel without any problem [7]. The rapid recharging

technology has enabled full recharging of the EV in 10 min-

utes. Besides rapid recharging, battery swapping technology

is also available which has recharging time as low as 5 min-

utes. However, battery swapping is expensive to implement

than recharging.

The problem of finding optimal path between a source

and destination node in the road network is a multi-objective

shortest path (MOSP) problem. In this work, the MOSP

problem has the following objectives: (i) Minimizing the

recharging time, (ii) Minimizing the travelling distance, and

(iii) Minimizing the travelling time. The MOSP is an NP-

hard discrete optimization problem [5, 6]. The objectives in

any multi-objective optimization problem are often contra-

dictory therefore, no one solution can be optimal in all ob-

jectives. Therefore, a set of Pareto optimal solutions is found

for the multi-objective optimization problem. The Pareto op-

timal set contains the non-dominated solutions. Evolutionary

computation (EC) algorithms have been predominately used

to solve multi-objective optimization problems. In many EC

algorithms the calculation in any iterations does not depends

on the previous iteration. Therefore, they are robust to dy-

namic changes in the parameter values of the road network

like changes in traffic, waiting delay at the recharging sta-

tions, etc. The performance of any EC is measured by the

number of Pareto optimal solutions it returns and the diver-

sity of the solutions. For practical applications other proper-

ties of the EC algorithms like computation time and memory

requirements are also very important. The research work in

this paper, focused on developing a memory and time effi-

cient EC algorithm for solving the MOSP problems in Elec-

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12), 
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 828



tric Vehicles. The objectives of the MOSP problem, can be

in contradiction with each other based on the traffic situation

or the queues at the recharging stations. For example, when

the shortest paths becomes congested then the travelling time

on them can exceed the other paths. The proposed algorithm

can find MOSP despite the changing traffic conditions. Sim-

ulated Evolution (SimE) [9] is a popular EC algorithm which

works on only one solution at a time and is therefore, mem-

ory efficient than the other population based algorithms like

Genetic Algorithms (GA), etc.

This paper proposed a SimE based multi-objectives opti-

mization algorithm for solving the MOSP problem in EVs.

The proposed SimE based algorithm has innovative good-

ness and allocation operations which are tailored for solving

the MOSP problem. The performance of the proposed algo-

rithm is compared with a famous heuristic: Non-dominated

Sorting Genetic Algorithm (NSGA) -II [8]. The NSGA-II is

a population-based algorithm for solving the multi-objective

optimization problems. The simulation results show that the

proposed algorithm can provide results equal to or better than

the NSGA-II while it requires lesser memory than NSGA-II.

This paper is organized as follows: Second section shows

the formal description of the problem. Third section contains

the detail of the proposed algorithm. Fourth section contains

the simulation results and comparison of the proposed algo-

rithm with the other algorithms. The last section contains the

conclusion.

2 DESCRIPTION OF THE PROBLEM

2.1 System Overview
In the car navigation system, the driver selects the source

and destination nodes of his/her journey. The navigation sys-

tem finds one or more optimal paths between the source and

destination nodes. The navigation systems of the modern ve-

hicles comprise of an embedded system which has interface

to the GPS (Global Positioning System). The selection of the

optimal path can either be performed independently by each

vehicle or the optimal path selection is performed at any cen-

tralized station for a group of vehicles.

This work assumes that the optimal path selection is per-

formed independently by the vehicles. Therefore, optimal

path selection is performed in the embedded system of the

car navigation system and it uses the updated information re-

lated to the road network from the GPS. The GPS system can

provide the information related to the location of recharging

stations and their recharging times to the EVs. The block di-

agram of the Optimal Path Selection (OPS) unit of an EV is

shown in Fig. 1. The figure shows that the OPS unit receives

inputs from the GPS and source and destination nodes from

the driver. The OPS searches the optimal path based on the

provided information and yields one or more optimal paths

Optimal Path Selection (OPS) Unit
embedded system

GPS receiver

a. Map of the road network,
b. Length of the roads,
c. Traffic on the roads,
d. Average speed of the vehicles traveling on the roads,
e. Location of the recharging stations,
f. Waiting delay and recharging delay at different stations,

Source (s) and destination (d) nodes of the journey

Optimal path(s)

Input from the GPS

Input from the driver

Output to the display of the
car navigation system

Fig. 1: Block diagram of the Optimal Path Selection (OPS)

Unit of the EVs.

Table 1: Properties associated with edges, recharging stations

and electric vehicles

Element Symbol Description

edge (ei ∈ E) ei.l Length of the edge

ei.S Average speed of the EVs

recharging station rj .Rdelay Recharging time per EV

(rj ∈ R) rj .Wdelay Waiting delay per EV due to queuing in it

rj .e e ∈ E, s.t. rj lies along the edge e

rj .p Distance of the rj from the start of rj .e

rj .D Travelling time of rj from the source node

electric vehicle tLIMIT The maximum time which the EV can

(EV ) travel without recharging

s Source node of the journey

d Destination node of the journey

Bs The battery level at the source node

to the display unit of the car navigation system.

2.2 Description of the Road Network
Let us consider that in the OPS unit, the electric vehi-

cle is represented as EV and the road network is repre-

sented by an undirected graph (G), which is represented as:

G = (V,E,R), where V is the set of all vertices or inter-

sections in the road network, E contains the road segments

which join the intersections and R contains the recharging

stations which exist in the road network. When the road net-

work contains a total of N nodes and M edges, then V =

{n0, n1, ..., nN−1} and E = {e0, e1, ..eM−1}. Any edge

ei ∈ E, ei = (nx, ny), where nx �= ny and nx, ny ∈ V . nx
and ny are the starting and ending nodes of the edge ei. When

the road network contains a total of m recharging stations,

then the set R is represented as: R = {r0, r1, ..., rm−1}.

The properties associated with the edges, recharging stations

and the electric vehicle are shown in Table. 1.

2.3 Description of the Multi-objective Optimization

Problem
Let us consider that the solution in the OPS unit is rep-

resented as: P = {PA, PB}. PA stores the edges from E

which form a path from the source to the destination node

and is represented as: PA = {ei, ej , .., ek}, ei = (s, nx) and

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12), 
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 829



Input: nodes: u, & v, G=(V,E), Ne= Number of elements in

E

Output: Q: A path from u to v nodes.

1: W= random(M)

2: Q= Apply Dijkstra’s Algorithm (u, v)

3: return Q

Fig. 2: Method to find paths: form path(u, v).

ek = (ny, d), and s, nx, ny, d ∈ V . PB stores the recharging

stations fromR on which EV should be recharged in order to

complete its journey on the path PA.

The optimization performed in the OPS unit aims to find the

paths which are optimized w.r.t. three functions: (i) f1(P
B),

which corresponds to the total recharging time. (ii) f2(P
A),

which corresponds to the total distance and (iii) f3(P
A),

which is the total travelling time. The values of the functions

can be computed as follows:

f1(P
B) =

∑
rj∈PB

(rj .Rdelay + rj .Wdelay) (1)

f2(P
A) =

∑
ei∈PA

ei.l (2)

f3(P
A) =

∑
ei∈PA

ei.l

ei.S
(3)

The objective function can be represented as: Obj(P )=

Minimize(f1(P
B), f2(P

A), f3(P
A)). The minimization is

performed through the proposed SimE-based algorithm.

3 PROPOSED ALGORITHM
Simulated Evolution (SimE) [9] is a general search strat-

egy for solving a variety of combinatorial optimization prob-

lems. The SimE optimization loop consists of the following

steps: (i) Evaluation, in which goodness of each element in

the population is evaluated. (ii) Selection, in which up-to

ns% elements in the current solution or PA having lower

goodness values are selected into the set S. (iii) Allocation,

in this step the elements in the set S will undergo through

the allocation process. The optimization iterations are con-

tinued until the stopping criteria which can be the maximum

time is reached. This work proposes a design of SimE which

has innovative goodness and allocation operations which are

tailored for the proposed multi-objective optimization prob-

lem. The proposed algorithm stores all non-dominated solu-

tions found during the optimization iterations, which forms

its set of Pareto optimal solutions. However, storing only one

non-dominated solution which has the maximum value of the

hypervolume is sufficient for the proper execution of the pro-

posed algorithm.

In the following the proposed goodness and allocation op-

erations are described in detail. First a method of building a

random path from nodes u to v is shown which will be used

to build a random path between any two nodes. The algo-

rithm is shown in Fig. 2 and is represented by the function

form path(u, v). In line 1, W stores M randomly gener-

ated integers between [1, 1000]. The elements in W are used

to assign weights to the edges inE. The Dijkstra’s Algorithm

finds shortest path w.r.t. the weights assigned to edges in line

1.

3.1 Goodness Function
In SimE, the goodness is defined as the ratio of the esti-

mated minimum cost to the actual cost of the elements. In

this work, the solution is represented as P = {PA, PB}.

In the Evaluation step, the goodness of all elements in the

set PA is determined. The PA comprises of a set of edges,

and the starting node of the first edge in it is the source node

and the ending node of the last edge in it is the destination

node. Before goodness calculation is performed, the weights

(w1, w2, w3) are assigned to all edges in E. The procedure

to assign weights to any edge ei ∈ E is shown in Fig. 3.

The weight w1 corresponds to the average of the recharg-

ing and waiting delays of all the recharging stations which

exists along the edge ei. The term in the denominator indi-

cates the total number of recharging stations on any edge [7],

which is used to calculate the average. The weight w2 cor-

responds to the length of the edge and w3 corresponds to the

travelling time on the edge. The proposed procedure to find

the goodness of any edge is shown in Fig. 4. In Fig. 4, the

goodness of the edge ei ∈ PA is calculated. The variable r1
holds the number of edges in PA which have w1 value lesser

than ei.w1. Similarly, the variables r2 and r3 holds the num-

ber of edges in PA which have w2 and w3 values lesser than

ei.w2 and ei.w3 respectively. At the end, the average of the

r1, r2 and r3 variables is calculated.

Input: Any edge ei ∈ PA, P = {PA, PB}
Output: ei.w1, ei.w2, ei.w3

1: ei.w1 =

∑
rj∈R&rj.e=ei

(rj .Rdelay+rj .Wdelay)

0.05×ei.l
2: ei.w2 = ei.l

3: ei.w3 = ei.l
ei.S

4: return {ei.w1, ei.w2, ei.w3}

Fig. 3: Procedure for the assignment of the weights to any

edge ei ∈ PA.

3.2 Allocation
The selection operation populates the set S by selecting

up-to ns × s elements from PA. ns ∈ [0, 1] ∈ R+. The se-

lection operation selects the elements from PA which are not

already selected and have lowest goodness value with proba-

bility Ps and any randomly selected element with probability

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12), 
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 830



Input: Any edge ei ∈ PA, P = {PA, PB}
Output: g(ei): goodness of the edge ei

1: r1 = 0, r2 = 0, r3 = 0

2: n =Number of elements in PA

3: for j = 0; j < n; j ++ do
4: if PA[j].w1 > ei.w1 then
5: r1 ++

6: end if
7: if PA[j].w2 > ei.w2 then
8: r2 ++

9: end if
10: if PA[j].w3 > ei.w3 then
11: r3 ++

12: end if-[]
13: end for
14: g(ei) =

r1+r2+r3
3

15: return g(ei)

Fig. 4: Goodness Function g(ei), (ei ∈ PA).

Ps−1. The allocation operation is applied after the selection

operation and it uses the elements in S.

The proposed allocation operation is shown in Fig. 5 us-

ing the pseudo code. The variable Pmin is initialized to PA.

As shown, the allocation operation consists of doubly nested

for loops. The outer-most loop executes for Ns number of

times and the inner loop executes for each element in S. In

the inner loop, an element from S is selected in each itera-

tion. A random sub-path which exists from the starting node

of the selected edge to the destination node is created. Then

the sub-path is concatenated with the portion of the original

solution (i.e., PA) from the first edge to the edge which lies

just before the edge selected from S. The resultant of the sum

of the weights (or the square root of the sum of the squares

of the three weights) of the new path is calculated and if the

value is lesser than the Pmin then Pmin is updated to the new

solution. At the end of the doubly nested for loops, the path

which has minimum value of the resultant of the sum of the

weights is returned and PA is updated.

3.3 Mutation
The mutation operation is applied with probability Mb, In

the mutation operation, the complete path which is stored in

PA is replaced by another path from source to destination.

The new path is formed using the form path function.

3.4 Selection of the Recharging Stations
The travelling limit (tLIMIT ) of the EV is the maxi-

mum time until which the EV can travel without recharg-

ing. Therefore, the EV requires periodic recharging dur-

ing its journey. The set PB in P stores the recharging sta-

tions on which the EV should be recharged. This subsection

Input: S = {x, y, ..., z}, P = {PA, PB}, Ns ∈ Z+

Output: PA (which is the path after the allocation opera-

tion)

1: s = Number of elements in S, Pmin = PA

2: n = Number of elements in PA

3: for i = 0; i < Ns; i++ do
4: for j = 0; j < s; j ++ do
5: snode = PA[S[j]].startnode, enode = PA[n −

1].endnode

6: t1 = FormPath(snode, enode)

7: t = concatenate{PA[0...S[j]− 1], t1}
8: v1 =

∑
ei∈t ei.w1, v2 =

∑
ei∈t ei.w2, v3 =∑

ei∈t ei.w3

9: R1 =
√
v21 + v22 + v23

10: v4 =
∑
ei∈Pmin

ei.w1, v5 =
∑
ei∈Pmin

ei.w2,

v6 =
∑
ei∈Pmin

ei.w3

11: R2 =
√
v24 + v25 + v26

12: if R1 < R2 then
13: Pmin = t

14: end if
15: end for
16: end for
17: PA = Pmin
18: return PA

Fig. 5: Allocation Operation.

shows the methods of selecting recharging stations for PB .

The proposed methods assumed that PA is already formed

and is not null. Before the recharging stations are selected,

the travelling time of all recharging stations which lie along

the edges in PA is determined. For any recharging station

rj ∈ PB , its travelling time from the source node (s) is

stored in rj .D. Equation (4) shows the calculation of the

rj .D value. The equations assumes that rj lies along ei and

function pos(ex) returns the position of any edge in the set

PA. pos(ex) < pos(ei), if ex lies before ei in PA.

Let us consider: rj .e = ei, then

rj .D =
∑

ex∈PA&pos(ex)<pos(ei)

ex.l

ex.S
+
rj .p

ei.S
(4)

The proposed work uses two different approaches to select

the recharging stations. The first approach is the Last Station

Strategy (LSS) and the second approach is the Random Se-

lection Strategy (RSS). In LSS, the recharging station which

has travelling time (or D value) closest but not greater than

the time which the EV can travel without recharging is se-

lected. The LSS approach is shown using flow chart in Fig.

6(a). In the RSS approach, a recharging station is randomly

selected from among the candidate recharging stations. The

RSS approach is shown using flow chart in Fig. 6(b). To

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12), 
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 831



Input: PA

TrvTime = f3(PA)
ToT = Bs x tLIMIT
cnt=0; lastD=0

m= Number of elements in PB

ToT <
TrvTime

R[i].D ≤ ToT and
R[i].D > lastD

B[ind]= R[i],
ind++

i=0, t=0, ind=0, B=null

if i < m

PB[cnt] = B[Rn],
lastD = B[Rn].D,

ToT = B[Rn].D + tLIMIT
cnt++

Yes

No

Yes

No
return(PB)

Yes

i++

No

Rn= random integer
between[0,ind-1]

Input: PA

TrvTime = f3(PA)
ToT = Bs x tLIMIT
cnt=0; lastD=0

m= Number of elements in PB

ToT <
TrvTime

R[i].D ≤ ToT and
R[i].D > lastD

t= R[i].D
ind= i

i=0, t=0, ind=0

if i < m

if (R[i].D >
t)

PB[cnt] = R[ind],
lastD = R[ind].D,

ToT = R[ind].D + tLIMIT
PB[cnt] = R[ind]

cnt++

Yes

No

Yes

No
return(PB)

Yes

Yes

i++

No

No

(a) (b)

Fig. 6: Selection of recharging stations

populate the set PB , the proposed algorithm applies both the

LSS and RSS techniques. Let us consider that the result from

the LSS is PB and the result from the RSS is PB .

3.5 Estimation of the Memory Requirements
The SimE works on only one solution. The proposed al-

gorithm creates additional paths which include: Storing a so-

lution which has minimum value of the product: f1(P
B) ×

f2(P
A)×f3(PA). The allocation operation creates two new

paths (t and Pmin). In the techniques for the selection of

recharging stations, the LSS creates one path and RSS cre-

ates two paths. The calculation of the number of paths which

should be stored in the memory is as follows:

Let us consider that PA or PB requires δ units of memory.

The maximum memory required is: memproposed= Memory

required by the current solution (2δ) + Memory required by

the allocation operation (2δ) + Memory required in storing

a non-dominated solution (2δ) + memory required in select-

ing the recharging stations (3δ). Therefore, the total memory

requirement is equal to 9δ. For comparison purposes, the

minimum memory required by any GA (Genetic Algorithm)

is also calculated. The GA stores a population of N elements,

and therefore requires: memGA= N × 2δ units of memory.

The ratio memGA

memproposed
= 2N

9 . In GA, the population size i.e.

N ≥ 10 [8].

4 SIMULATIONS
The proposed algorithm is implemented using Java and its

performance is compared with Non-dominated Sorting Ge-

netic Algorithm - II (NSGA-II). The NSGA-II also optimizes

Table 2: Results of the Wilcoxon Rank-Sum tests.

Road Network p h Remarks

RG1 0.9031 0 The Hypervolume distributions are same.

RG2 0.9676 0 The Hypervolume distributions are same.

RG3 0.4567 0 The Hypervolume distributions are same.

RG4 0.0858 0 The Hypervolume distributions are same.

paths w.r.t. the recharging time, distance and travelling time.

NSGA-II uses the LSS scheme for selecting the recharging

stations. The NSGA-II was implemented with population

size (N) equal to 10. The ratio memGA

memproposed
= 2.22. In NSGA-

II, the population size is 2N, therefore, the ratio becomes

4.44. The proposed algorithm was implemented with param-

eter values: Ns= 5, i.e., the loop im the Allocation operations

executes for five times, and Mb, which is the mutation prob-

ability is set to 0.60. The maximum time for the optimization

loop is set to 10 seconds in both the proposed algorithm and

in NSGA-II. Four road networks (RG1, RG2, RG3, RG4)

of different complexities are generated using a research tool

[10]. The complexity of the road networks are as: RG1

having 1800 edges and 600 nodes, RG2 having 900 edges

and 300 nodes, RG3 having 3400 edges an 1000 nodes, and

RG4 having 4700 edges and 1400 nodes. The values to road

lengths are randomly assigned to integers between [1, 400]

km. The average speed on the edges are assigned to ran-

domly selected integers between [40,120]. The waiting and

recharging delay at the recharging stations varies randomly

between [10, 20] ∈ R. The maximum time which the EV can

travel without recharging is considered to be 2 hours. In any

test case the source and destination nodes are randomly se-

lected and the algorithm are used to find the optimum paths

between them. On each graph, up-to 20 test problems are

executed. In each test problem, the Pareto sets are obtained

from both algorithms.

The 3D Hypervolume calculation is performed by using

the tool [11], which was proposed by Carlos Fonseca et al..

The tool calculates the Hypervolume for the minimization

problems. In the Hypervolume calculation, the bounds for

the maximum values are considered more than the values in

the Pareto Optimal sets. The larger Hypervolume value rep-

resents that the Pareto optimal set consists of better solutions.

The results are shown using Box-and-Whisker plots in Fig. 7.

The box-and-whisker plots, the whiskers are drawn between

the minimum and maximum values. The central mark is the

median, the edges of the boxes are at the 25th and 75th per-

centiles. The Wilcoxon Rank Sum test [12] is used to test

the null hypothesis, which shows that the Hypervolume dis-

tributions obtained from the two algorithms are same. The

rank sum test returns p and h values. If h = 0, which means

that the two distribution are same. p indicates the proba-

bility that an element from the first distribution is equal to

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12), 
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 832



(b) RG2

(c) RG3 (d) RG4

hy
pe
rv
ol
um
e

hy
pe
rv
ol
um
e

hy
pe
rv
ol
um
e

hy
pe
rv
ol
um
e

(a) RG1

Fig. 7: Box-and-Whisker Plots of the Hypervolumes on dif-

ferent graphs.

the element from the second distribution. The MATLAB’s

ranksum function is used to apply the rank sum test. The

results are shown in Table 2, which shows that the Hyper-

volumes obtained fromthe proposed algorithm and NSGA-II

on different graphs are same. Therefore, the Pareto Optimal

solutions obtained from the proposed algorithm are as good

as obtained from the NSGA-II.

5 CONCLUSION
In this work, the multi-objective route optimization prob-

lem for the Electric Vehicles (EVs) is solved by using the

Simulated Evolution (SimE) based algorithm. The optimiza-

tion objectives are: recharging time, distance and travel-

ling time. Innovative and problem specific Goodness and

Allocation operations are being used to achieve better per-

formance. The comparison of the proposed algorithm with

NSGA-II, which is a popular GA based heuristic for the

multi-optimization problems shows that the proposed algo-

rithm achieves same results as NSGA-II. However, the pro-

posed algorithm requires memory which is 2.2 times lesser

than any GA or population based algorithm. This memory

size reduction is effective for implementing an embedded

hardware.

REFERENCES
[1] Ahmed Y. Saber & Ganesh K. Venayagamoorthy, “One

Million Plug-in Electric Vehicles on the Road by 2015,”

Proceedings of the 12th International IEEE Conference

on Intelligent Transportation Systems, St. Lious, MO,

USA, Oct. 3-7, 2009.

[2] Medhi E.-Amoli, Kent Choma, & Jason

Stefani,“Rapid-Charge Electric-Vehicle Stations,”

IEEE Transactions of Power Delivery, Vol. 25, No. 3,

pp. 1883-1887, July 2010.

[3] Zheng Li, Zafer Sahinoglu, Zhifeng Tao, & K. H. Teo,

“Electric Vehicles Network with Nomadic Portable

Charging Stations,” 2010 IEEE 72th Conference on Ve-

hicular Technology Fall, VTC-2010 Fall, Ottawa, ON,

USA, Sept. 6-9, 2010.

[4] Olle Sundstorm & Carl Binding, “Planning Electric-

Drive Vehicle Charging under Constrained Grid Con-

ditions,” 2010 Internal Conference on Power System

Technology, (POWERCON), Zhejiang, China, Oct. 24-

28, 2010.

[5] Zbigniew TARAPATA, ”Selected Multicriteria Shortest

Path Problems: AN Analysis of Complexity, Models

and Adoption of Standard Algorithms,” Int. J. Appl.

Math. Comput. Sci., 2007, Vol. 17, No. 2, 269-287.

[6] M.R. Garey and D. S. Johnson: Computers and
Intractability: A Guide to the Theory of NP-
Completeness., W. H. Freeman and Co., 1997

[7] Zheng Li, Zafer Sahinoglu, Zhifeng Tao, & K. H. Teo,

“Electric Vehicles Network with Nomadic Portable

Charging Stations,” 2010 IEEE 72th Conference on Ve-

hicular Technology Fall, VTC-2010 Fall, Ottawa, ON,

USA, Sept. 6-9, 2010.

[8] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and

T. Meyarivan, “A Fast and Elitist Multiobjective Ge-

netic Algorithm: NSGA-II,” IEEE Trans. Evolutionary

Computation, vol. 6, No. 2, April 2002.

[9] S.M. Sait & H. Youssef, Iterative Computer Algorithms

with Applications in Engineering, IEEE Computer So-

ciety Press, 1999.

[10] Fabien Viger, Matthieu Latapy, “Efficient and simple

generation of random simple connected graphs with

prescribed degree sequence,” Proc. 11th Conference

of Computing and Combinatoric (COCOON 2005),

LNCS 3595, pp. 440-449, 2005.

[11] Carlos M. Fonseca, Lus Paquete, and Manuel Lpez-

Ibez,“An improved dimension - sweep algorithm for the

hypervolume indicator,” Proc. 2006 IEEE Congress on

Evolutionary Computation (CEC’06), pp. 11571163,

Piscataway, NJ, July 2006.

[12] Hollander, M., and D. A. Wolfe,

Nonparametric Statistical Methods, John Wiley

& Sons, Inc., 1999.

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12), 
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 833




