
1 INTRODUCTION
Assemble to order (ATO) systems refer to a production

strategy in which the customer must first order specified
products before the item is manufactured [1]. The main
advantage of ATO systems is that customers can quickly
receive products customized to meet their requirements.
Since the optimal inventory policies for the general ATO
systems are not known, heuristic policies such as
independent base-stock policies or batch-ordering policies
are often used in practice to manage the component
inventories. However, there is an exponential growth in the
huge solution space as the number of items increases. The
huge solution space makes the considered problem very hard
for conventional heuristic methods to find near-optimal base-
stock policy in a reasonable time.

To overcome the drawback of consuming much
computation time for complex ATO systems, we propose an
ordinal optimization based evolution algorithm (OOEA) to
solve for a good enough target inventory level within a
reasonable amount of time. The key idea of the OOEA is to
narrow the solution space stage by stage or gradually restrict
the search through iterative use of ordinal optimization (OO)
theory [2]. The OO theory has been successfully applied to
cope with the NP-hard optimization problems such as the
wafer probe testing process [3], the cyclic service of the
centralized broadband wireless networks [4], and resource
allocation of grid computing system [5]. The ATO system
operating with a continuous-review base-stock policy can be
formulated as a combinatorial optimization problem that
possesses a huge solution space and is most suitable for
demonstrating the validity of the OOEA.

Therefore, the purpose of this paper is to determine a good
enough target inventory level using limited computation time
such that the expected total profit per period is maximized.

The developed mathematical formulation and simulation
procedure can be used for any distributions of arrival
processes and production times. The proposed OOEA
consists of diversification stage and intensification stage. A
radial basis function (RBF) network [6] is firstly treated as a
surrogate model to roughly evaluate the objective value of an
inventory level. In the diversification stage, the genetic
algorithm (GA) [7] is utilized to efficiently select N excellent
solutions from the solution space where the fitness is
evaluated with an RBF network. In the intensification stage,
we proceed with the optimal computing budget allocation
(OCBA) method [8], which allocates the computing resource
and budget by iteratively and adaptively selecting the
excellent solutions.

We organize our paper in the following manner. In
Section 2, we present a mathematical formulation of a
general ATO system. In Section 3,we illustrate the proposed
OOEA. In Section 4, the proposed OOEA is applied to an
ATO system that comprises 10 items on 6 products. Finally,
we draw a conclusion in Section 5.

2 ASSEMBLE TO ORDER SYSTEMS

2.1 Problem Statement
The ATO system consists of a set of h key items and m

non-key items from which n products are assembled [9].
Orders for each of n different products arrive according to
independent Poisson processes with constant arrival rates

i, ni ,,1 . Products are made up of a collection of items
of different types. Items are either key items or non-key
items. If any of the key items are out of stock, then the
product order is lost. If all key items are in stock, the order is
assembled from all key items and the available non-key
items. Product i requires

jia ,
items of type j, where j ranges
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from 1 to (h+m). Each item sold brings a profit
jp , and each

item in inventory has a holding cost per unit time of
jh ,

mhj  ,,1 . There are inventory capacities
jC for each

item, so that
jj Cx 0 , where

jx is the inventory level of

item j, mhj  ,,1 . The production time for each item is
truncated normally distributed with mean

j and variance
2
j , mhj  ,,1 , lower bound 0 and upper bound and is

independent of the products’arrival processes.
The ATO system operates with a continuous-review base-

stock policy under which each item has a target base stock

jx , mhj  ,,1 , and each demand for an item triggers a
replenishment order for that item. There are (h+m) machines,
each producing a single type of item. Items are produced one
at a time on dedicated machines. We wish to maximize the
expected total profit per unit time by selecting the target
inventory level for a given arrival rate.

2.2 Mathematical Formulation
The ATO system under the assumed arrival rates for each

order can be formulated as follows:

)]([max x
x

fE


0 j jx C  , Zx j  , mhj  ,,1 . (1)

where  mhxx  1x denote the vector of inventory level,

)]([ xfE denotes the expected total profit per unit time of x .
The inequality constraint for each

jx is 0 j jx C  , where

the upper bound ensures that we will not go over capacity.
Apparently, the solution space is

{
1( , , ) | 0 ,h m j jx x x C  x  Zx j  , mhj  ,,1 } (2)

where  consists of ( 1)h m
jC  possible x . Suppose that

8h  , 2m  and 20jC  for 1, ,10j   , the size of  will be
1021 , which is very huge. The relationship between inputs

and output of ATO stochastic simulated procedures is
described in Fig. 1, in which x and λare the input variables,

( )f x is the output objective value,
wT denotes the warm-up

period, and
maxT denotes the predetermined measurement of

time. Each simulation replication should start from a fully
stocked system with no orders in production, have a warm-
up period of

wT time units, and then capture statistics for the

next
wTT max

time units of operation.
In practice, it is impossible to perform an infinitely long

simulation. Thus, the sample mean of the stochastic
simulation for a given value of x is defined as





L

l
lfL

f
1

)(
1

)( xx (3)

where L is the total number of simulation replications, )(xlf
denotes the objective value of the l th simulation replication.

The )(xf is an approximation to )]([ xfE , and )(xf is
asymptotically close to )]([ xfE as L increases. Thus, let

410eL  represent the sufficiently large L . In the sequel, we

define the exact model of (1) as when
eLL  . For the sake of

simplicity in expression, we let ( )ef x denote the objective
value of a given x computed by exact model.

ATO stochastic simulated
proceduresInput

variables Output variable

Tw, Tmax

( )f x,λx

Fig. 1. Relationship between the inputs and the output of
ATO stochastic simulated procedures

3 SOLUTION METHOD

3.1 RBF network
The RBF networks are three layer networks including

input source nodes, hidden neurons with basis functions, and
output neurons with linear activation functions, as shown in
Fig. 2 [6].
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Fig. 2. Structure of an RBF network

An RBF network with a single output can be expressed as
follows:

1

( ) ( )
H

h h
h

y 


 x x z (4)

where ( )y x is the objective value of a given x , H is the
number of hidden nodes,

hz are the centers of RBF network,

( )is a set of RBF,
j are weight coefficients, and is

usually the Euclidean norm. In this work, the Gaussian
function is used as the RBF. Once the centers have been
chosen and fixed, we use the given M samples to find the

1[ , , ]H ω  by setting up the M equations:

(1) (1) (1) (1)
1 1 2 2

(2) (2) (2) (2)
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(5)
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The above equations can be solved using the least squares
error as long as the vectors ( ) ( )i jx x , for ji  . Once we
have the weight coefficients and centers, we can evaluate the
RBF network at a new sample by using (4) as a guide. We
let ( , )F x ω denote the functional output of the trained RBF
network of a given x .

3.2. The Genetic Algorithm
GA is a stochastic search algorithm based on the

mechanism of natural selection and natural genetics. By the
aid of the above effective objective value evaluation model,
we can select N excellent solutions from  using GA.
Assuming an initial random population produced and
evaluated, genetic evolution takes place by means of three
basic genetic operators: (a) parent selection; (b) crossover; (c)
mutation [7]. The chromosome in GA terminology
represents a solution x , and each chromosome is encoded by
a string of 0s and 1s. Parent selection is a simple procedure
whereby two chromosomes are selected from the parent
chromosome based on their fitness values. Solutions with
high fitness values have a high probability of contributing
new offspring to the next generation. The selection rule we
used in our approach is a simple roulette-wheel selection.
Crossover is an extremely important operator for the GA. It
is responsible for the structure recombination and the
convergence speed of the GA and is usually applied with
relatively high probability denoted as

cp . The chromosomes
of the two parents selected are combined to form new
chromosomes that inherit segments of information stored in
parent chromosomes. The crossover scheme we employed is
the single-point crossover. Mutation is the operator
responsible for the injection of new information. With a
small probability, random bits of the offspring chromosomes
flip from 0 to 1 and vice versa and give new characteristics
that do not exist in the parent chromosome. In our approach,
the mutation operator is applied with a relatively small
probability denoted as

mp to every bit of the chromosome.
We randomly selected I chromosomes from  to be the

initial populations of the GA. The GA is iterated until the
maximum iteration count

maxk is reached. After reaching the
stop criterion, we rank the final generation of these I
chromosomes based on their fitness values and pick the top
N chromosomes, which form the N excellent solutions.

3.3. The OCBA technique
First, a small number of simulation replications denoted by

0n is applied to calculate the means and variances of the
sample mean of objective value for the N excellent solutions.
Let T denote the allowable computing budget for selecting
the best solution and

in denote the number of simulation

replications allocated to the i th solution from T . We
increase the computing budget by  for each iteration, and
the criteria of the OCBA technique is to optimally allocate
T to

1n ,
2n , …, Nn with

1 2 Nn n n T    , such that the
probability of selecting the best solution is maximized. The
value of the allowable computing budget is determined by

( ) /eT N L s  , where s is a speed-up factor for

corresponding N using the OCBA technique. The OCBA
technique can be stated in the following [8].
Step 0. Perform a small number of simulation replications

0n for all N excellent solutions. Set 0l  ,
1 0
ln n ,…, 

0
l
Nn n ,

and set the value of and T .
Step 1. If

1

N
l
i

i

n T


 , stop and output the best solution *x with

the maximum number of simulation replications; else, go to
Step 2.
Step 2. Increase  additional number of simulation
replications to

1

N
l
i

i

n

 , and compute the new allocation of

simulation replications by 1

1 1,

( ) / (1 )
N N

l l l l
j i b i

i i i j b

n n  

  

     ,

1 1l l l
b b jn n  , and 1 1l l l

i i jn n  for all i j b  , where
2

( )

( )

l l l
i b jl

i l l l
j b i

f f

f f






  
    

, 2

1,

( )
lN

l l i
b b l

i i b i


 

 

  ,
1

1
( )

l
in

l
i k il

ki

f f
n 

  x ,

 2

1

1
( )

l
in

l l
i k i il

ki

f f
n




  x ,
ix represents the i th excellent

solution, ( )k if x denotes the objective value of
ix at the k th

simulation replication, and arg max l
ii

b f .

Step 3. Perform additional 1max(0, )l l
i in n  simulation

replications for the i th excellent solution, 1,...,i N . Set
1l l and go to Step 1.

3.4 The OOEA
Now, the proposed OOEA can be stated as follows.

Step 1: Randomly select M x ’s from . Compute the
corresponding ( )ef x for each x . Train an RBF network and

calculate its ω using the obtained M input-output pairs,
( x , ( )ef x )’s. Let ( , )F x ω denote the functional output of the
trained RBF network.
Step 2: Randomly select I x ’s from  as the initial
population. Apply the GA to these individuals assisted by
RBF network, ( , )F x ω . After the GA converges, we rank all
the final I x’s based on their approximate fatnesses and
select the top N x’sto be the excellent solutions.
Step 3: Use the OCBA technique to select the best x from
the N excellent solutions, and this x is the good enough
solution that we seek.

4 TEST RESULTS
To gain more attention from broad readers, we set up a

similar example provided in [10] as the application example.
The ATO system has six types of product orders (n=6) and
ten items including eight key items (h=8) and two non-key
items (m=2). Different types of product orders come into the
system as Poisson arrival processes with different rates,

i, 6,,1i , and each of them requires a set of key items

and a set of non-key items. Each item sold brings a profit,
jp ,

and each item in inventory has a holding cost per period,
jh ,

10,,1j . There are inventory capacities for each item,
jC ,
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10,,1j , such that
jj Cx 0 , and the production time for

each item is normally distributed with mean
j and variance

2
j , 10,,1j , truncated at 0. All parameters used are

included in Tables 1 and 2. The measurement of time is
assumed to start

wT =20 up until
maxT =70.

Table 1. Parameters related to ten items
Item 1 2 3 4 5 6 7 8 9 10

jp 1 2 3 4 5 6 7 8 9 10

jh 2 2 2 2 2 2 2 2 2 2

j 0.15 0.40 0.25 0.15 0.25 0.08 0.13 0.40 0.08 0.13

j 0.0225 0.06 0.0375 0.0225 0.0375 0.012 0.0195 0.06 0.012 0.0195

jC 20 20 20 20 20 20 20 20 20 20

Table 2. Parameters related to six products
Key items Non-key itemsProduct i

1,ia 2,ia 3,ia 4,ia 5,ia 6,ia 7,ia 8,ia 9,ia 10,ia

1 4.2 1 0 0 1 0 1 1 0 0 1
2 3.6 1 0 0 0 1 1 1 0 0 1
3 3 0 1 0 1 0 1 0 1 1 1
4 2.4 0 0 1 1 0 1 0 1 1 0
5 1.8 0 0 1 0 1 1 1 0 0 1
6 1.2 0 1 1 1 0 1 0 1 0 0

To construct the surrogate model, we use an RBF
network consisting of 10 neurons in input layer, 20 neurons
in hidden layer, and 1 neuron in output layer. The 10 neurons
in the input layer are for x , and the single output neuron is
for [ ( )]E f x . The spread of Gaussian function is set to 1 .
The system’s condition is the six arrival rates of product
orders,

i, 6,,1i , which are given in Table 2. For a given
system condition, we train the RBF network by randomly
selecting M=9604 x’s from thediscrete solution space 
first, then evaluate the corresponding ( )ef x . We use the

above 9604 pairs of ( , ( )efx x )’s as the input and output pairs 
to train the BRF network by calculating its weight
coefficients. Once the RBF network is trained, the
approximate objective value of [ ( )]E f x for a given x can be
obtained from the output of RBF network.

We have simulated the OOEA for two cases of N with
N=100 and 50. The following parameters are used in GA:
I =1000, 8.0cp , 03.0mp , and 30max k . The following

parameters are used in OCBA:
0n =20, =20, and 410eL  .

Since s =25 and 20 corresponding to N=100 and 50,
respectively, the parameters T used in OCBA are different in
the two cases: T= 40000 and 25000 for N =100 and 50,
respectively. The good enough target inventory level *x , the
corresponding *( )ef x , and the consumed CPU times for the

two cases are presented in Table 3. Apparently, as N
increases, the corresponding *( )ef x increases, however the
consumed CPU time also increases. Above all, the CPU
times consumed in all cases are within two minutes, which
are very fast.

Table 3. The good enough target inventory level *x , the
corresponding *( )ef x , and the consumed CPU times for the
two cases of N

N s T Good enough target
inventory level *x

*( )ef x CPU times
(minute)

100 25 40000 [3 4 4 13 7 4 4 2 5 8] 237.83 1.91
50 20 25000 [3 7 5 14 9 4 4 2 8 9] 236.06 1.66

5 CONCLUSION
In this work, we have proposed an OOEA to solve for a

good enough target inventory level of an ATO system using
reasonable computation time. By the aid of the RBF network,
the objective value of an inventory level can be roughly
evaluated without consuming much computation time. Via
stochastic simulation optimization, the arrival processes and
production times of ATO system can be from any
distributions, and the dimension of the problem can be high.
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