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Abstract: Morphological computation is the concept for which a well-designed hardware can bear part of the computational
cost required for robot’s control and perception. So far, many musculoskeletal robots have been developed by taking inspiration
from human’s one and shown superior motion performances. The use of pneumatic artificial muscles (PAMs) has been the key to
realize these high performance. Additionally, PAMs have the possibility of being used as sensors for environmental information
because they are flexible and backdrivable. In this research, we focus on clarifying how PAMs can contribute to morphological
computation of robots driven by these actuators. In particular, we propose an analysis method based on transfer entropy and
apply this method to the experimental data acquired by a musculoskeletal robot that opens a door.
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1 INTRODUCTION

Creating a robot inspired from biological systems has
been an attractive approach for many researchers in robotics.
Especially, human’s musculoskeletal system has been often
focused because it was optimized to realize intelligent mo-
tions during the whole evolutionary history of humans. So
far, many musculoskeletal robots that exploit information
processing provided by well-designed musculoskeletal struc-
tures were proposed. This information processing is called
morphological computation and it is one of the key words
that symbolize the field of the artificial intelligence paying
attention to the embodiment[1].

Artificial pneumatic muscles (PAMs) have been one of
most suitable actuators to develop musculoskeletal robots.
Thanks to useful features proper of PAMs such as flexibil-
ity, backdrivability and high power-to-weight ratio, muscu-
loskeletal robots driven by PAMs have successfully shown
superior motion performances[2][3]. Additionally, PAM’s
state have sometimes been used as a sensor[4] that provides
information on the external world and on the state of the
robot. This information can be interpreted as proprioceptive
information of the musculoskeletal robot and we think that
this point is notably important to understand morphological
computation in robot’s perception. However, in previous re-
searches, the PAM (among the robot’s numerous PAMs) that
contains important information on the external world was re-
quired to be known beforehand and the air-flow to/from such
PAM had to be set to zero during the sensing process.

In this research, we focus on morphological computa-
tion of musculoskeletal robot’s perception using flexibility
of PAMs. In particular, in this paper, we aim to show that ac-
quiring environmental information is possible even while the

PAM is being driven. Additionally, we don’t specify which
PAM notably contains environmental information in advance
and figure out which PAM is important from the data of all
PAMs available in the robot. To this end, we use a muscu-
loskeletal robot arm able to easily open a door by exploiting
the morphological computation provided by the flexibility of
PAMs. Additionally, we propose an analysis method based
on transfer entropy to investigate whether or not PAMs driv-
ing the robot arm can contain environmental information. Fi-
nally, we apply the proposed method to the data taken in a
door-opening task and discuss the analysis results.

2 MUSCULOSKELETAL ROBOT ARM
In this research, we use a musculoskeletal robot arm de-

veloped in our research group. This robot arm is driven by
PAMs and has several sensors to control and observe the
states.

2.1 Hardware design

Fig.1 shows the developed musculoskeletal robot and the
configuration of its degrees of freedom. This robot has 7 de-
grees of freedom(DOF) in its skeletal structure and the con-
figuration is schematically similar to the human’s one. For
example, the robot arm employs a radioulnar joint and an el-
lipsoidal joint in the forearm and the wrist, respectively[5].
Fig.2 shows the layout of the PAMs in the robot. The robot
is equipped with 17 groups of PAMs for driving its skele-
tal structure. Because the PAMs have flexibility and back-
drivability, the arm can change the posture accordingly to
excerting external force. The layout of the PAMs presents
similarity with human muscles as well. For example, most
of PAMs are configured in the form of antagonistic pairs and
there are not only monoarticular muscles but also biarticu-
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Fig. 1. The 7-DOF musculoskeletal robot arm. The structure
is schematically similar to the one of humans and it is driven
by PAMs.
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Fig. 2. PAMs layout of the developed pneumatic robot arm.
There are 17 different groups of PAMs in the robot arm. Mus-
cles having the same muscle ID are controlled as if they were
a single muscle

lar muscles[5]. Additionally, the robot mounts a robot hand
driven by PAMs at the end of the arm[6].

In order to investigate whether or not acquiring environ-
mental information from PAMs is possible even if PAMs are
being driven, the robot arm was equipped with several kinds
of sensors. Since analytical models of PAM’s statics have
three variables, namely pressure, tension and length, it is ob-
vious that at least two of three variables have to be measured
to know the static state[7] of the PAM. In the musculoskele-
tal robot arm, pressure and tension sensors are available for
all PAMs and all PAMs except the robot hand, respectively.

2.2 Control system

So far, many researches have focused on controlling
PAMs and the statics was modeled accurately[7]. However,
since the analytical models are very complex, it is very dif-
ficult to fully consider these models to generate motions of
musculoskeletal robots driven by PAMs. Therefore, simple
pressure feedback control has been often used[8][9]. In this

Fig. 3. Control system of the developed musculoskeletal
robot.

research, we also adopt a pressure feedback system based on
PID control.

Fig.3 shows the control system of the robot. Note that
all the sensor information and control signal can be recorded
during an experiment. For the control server, ART-Linux1

is employed to ensure realtime data sampling and control.
Because the control system shown in Fig.3 needs only the
pressure information from all PAMs, the tension sensor in-
formation is recorded only for analysis purposes. Actually,
the tension sensor information is very important for the anal-
ysis because the robot can assume different postures with the
same pressures depending on the tensions.

3 MOTION ANALYSIS OF MUSCULOSKELE-

TAL ROBOT
When a musculoskeletal robot is controlled by a time-

series of desired pressures, the obtained sensor data has a
lot of information about the desired pressures. Therefore, it
is required to analyze the differences caused by changes of
external force exerted by physical contact and dynamics of
the robot. In this research, we focus on transfer entropy to
extract these differences.

3.1 Transfer entropy
Transfer entropy is a measure which can quantify nonlin-

ear relationships among stochastically generated time-series
of data and a stochastic variable. Intuitively speaking, trans-
fer entropy quantifies dynamic information flow, by measur-
ing how large the influence from a stochastic variable to a
time-series of data is.Additionally, transfer entropy can quan-
tify the information flow correctly even in the cases where the
two stochastic variables are influenced by another stochastic
variables. Recently, transfer entropy has been exploited in

1A realtime operating system based on Linux developed by Na-
tional Institute of Advanced Industrial Science and Technology in Japan:
http://www.dh.aist.go.jp/en/research/humanoid/ART-Linux/
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Fig. 4. The schematic relationship amongM , P , F and the
external force .

the robotics field to find out causalities among robot sensor
data[10].

Transfer entropy between two discrete stochastic variables
I andJ can be defined as:

TJ→I =
∑

in+1,in,jn

P (in+1, in, jn) log
P (in+1|in, jn)
P (in+1|in)

(1)

Wheren is a discrete time. This indicates that the transfer
entropy is similar to Kullback-Leibler divergence between a
probability distribution assumingI has Markov property and
a probability distribution assumingI is a subject toJ .

3.2 Analysis method
Considering the ideal condition of pressure feedback con-

trol, in which the desired pressureM is exactly correspond-
ing to the actual pressureP , the subsidiarity ofF toM orP
can be expressed by using transfer entropy written as follow-
ing:

TM→F =
∑

ft+1,ft,mt

P (ft+1, ft,mt) log
P (ft+1|ft,mt)

P (ft+1|ft)

= TP→F (2)

= TM,P→F

As explained in the beginning of this section, the aim of the
analysis is investigating the difference caused by changes of
external force exerted by physical contact and dynamics of
the robot. To this end, we evaluate the difference by using
the ideal condition Eq.2 as the baseline.

In order to consider the qualitative meaning ofTM→F

andTM,P→F in the actual condition, we show the relation-
ship amongM , P , F and the external force schematically in
Fig.4. In the actual condition, the error on the pressure feed-
back control has to be caused by external force derived from
physical contact with the environment and by the dynamics
of the robot. As a result,TM→F andTM,P→F have to be dif-
ferent. Considering howTM→F andTM,P→F change com-
pared to the ideal condition,TM,P→F is larger thanTM→F

in most cases since theM,P will has larger information on
the external force than theM alone.

In this paper, we evaluate the differenceTCM,P→F =

TM,P→F −TM→F as a measure on how the dynamics of the
robot and physical contacts with the environment influence
the PAM’s states. This measure can be interpreted as the fact
that it is possible to subtract the effect of theM because both
TM→F andTM,P→F contain the information flow from the
M to theF .

TheTM,P→F can be written as following:

TM,P→F = (3)∑
ft+1,ft,mt,pt

P (ft+1, ft,mt, pt) log
P (ft+1|ft,mt, pt)

P (ft+1|ft)

SubtractingTM→F from Eq.3,TCM,P→F can be written as
following:

TCM,P→F =

TM,P→F − TM→F = (4)∑
ft+1,ft,mt,pt

P (ft+1, ft,mt, pt) log
P (ft+1|ft,mt, pt)

P (ft+1|ft,mt)

As explained above, this measureTCM,P→F should indicate
how external force influences the PAMs. Note thatTCM,P→F

does not have theoretical validity although similar method
can be found in related research[10]. Additionally, we note
that TCM,P→F is applied individually for all PAMs in the
robot arm without specifying which PAM should be focused.

4 EXPERIMENT
In this research, we focus on a door-opening task as an

example of task in which both exerting and changing ex-
ternal force are present. At first, we will explain about the
door-opening task used in the experiment, which can be at-
tained by using the morphological computation of the mus-
culoskeletal robot shown in Fig.1. In the following, we apply
the proposed analysis method based on transfer entropy to
the data obtained in the door-opening task.

4.1 Door-opening task

The door-opening task is a task in which a robot arm
reaches a doorknob, grasps it and opens the door. For the
musculoskeletal robot shown in Fig.1, the door-opening task
is one of most suitable task to exploit its morphological com-
putation because of the flexibility and backdrivability offered
by the PAMs.

Fig.5 shows the sequential snapshots of the robot’s motion
during door-opening task. The sequence of desired pressures
was designed through a trial-and-error process. However, the
process is not very complex because it is possible to safely
come in contact to the doorknob and move according to the
physical constraints imposed by the doorknob easily due to
the flexibility of the PAMs. For instance, the rotating and
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Fig. 5. The execution of the door-opening task. The developed musculoskeletal robot arm can adaptively grasp and rotate the
door knob, and open the door by exploiting its morphological computation.

the opening can be accomplished by inaccurate control be-
cause the physical constraints of the door hardly limits the
robot motions and guides them to the few available motions
when the robot hand is fixed on the doorknob. Since the door-
opening consists in a reaching, rotating and opening phase
as shown in Fig.5, it is a good example in which the differ-
ences previously explained are caused by changes of external
force exerted by physical contacts and by the dynamics of the
robot.

In addition to the three phases in the door-opening task,
we add following three conditions of the task:

1. normal condition (successful trial)

2. locked condition (the door does not open)

3. uncontact condition (failure in reaching the doorknob)

In this paper, we analyze the data obtained in these three
conditions. In particular, we investigate how different the
TCM,P→F are in the three phase of the door-opening task and
in the three different conditions.

4.2 Result
For the analysis, 10 trials data were collected for each

three conditions. In each trials, the robot arm starts reach-
ing in 0.9 seconds from the beginning of the trial, grasps and
rotates the doorknob at 1.0 seconds and pulls it for 3.0 sec-
ond after the rotation. In comparison with the first condition,
the second condition will differ in the second phase and the
third condition will be differ after touching the doorknob. It
can be assumed that these differences among three conditions
and three phases will be observed byTCM,P→F .

Fig.6 shows the average ofTCM,P→F value in ten trials of
each conditions. The error bar indicates the standard devi-
ation. The left of Fig.6 shows theTCM,P→F value for each

PAMs in the reaching phase. In the reaching phase, there is
no difference among the three conditions except that for the
third condition the contact with the doorknob does not occur
at the end of the phase. Small differences can be observed in
muscle 1, 2, 3 and 4 which drive the wrist of the robot arm as
shown in Fig.2. Therefore, the analysis results are reasonable
for the reaching phase.

The middle of Fig.6 shows the result for the rotating
phase. In this phase, the third condition is very different from
the others because it is not physically constrained by the door.
From the result, it can be observed that there is a large dif-
ference in muscles 6, 7 and 16 between the third condition
and the others. Considering the physical meaning of why
theseTCM,P→F values are larger in the third condition, we
note that these muscles will get a large reaction force from
the know when this is grasped and rotated, if the robot hand
is actually fixed on the doorknob. In other words, in the first
and the second conditions, the robot motions have to obey the
physical constraints imposed by the door. As a consequence,
we can assume that theTCM,P→F value captured the environ-
mental information reflected in muscle 6, 7 and 16 for the
third condition.

The right of Fig.6 shows the results for the opening phase.
In this phase, the second condition provides large resistance
in moving the arm because the door is locked and does not
open. Therefore, theTCM,P→F value will be increased in the
second condition because the change of the pressure will be
more directly easily reflected in the change of the tension.
In the right of Fig.6, it can be seen that theTCM,P→F values
for almost muscles in the second condition are larger than
the same values in the first condition. In the third condition,
theTCM,P→F values of some muscles, such as muscle 8 and
10, are larger than the value for the same quantities in the
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Fig. 6. TheTCM,P→F in three conditions and three phases.

first condition. This indicates that physical constraints some-
times reduce the resistance of gravity because muscle 8 and
10 mainly bear the weight of the arm in this posture.

Through this experiment, it is qualitatively confirmed that
PAMs driving the robot arm can be exploited to extract en-
vironmental information such as external force derived from
physical contacts with the environment and from the dynam-
ics of the robot. However, this is still a preliminary result that
needs to be validated in order to confirm the main concept of
this research. Future works will deal with more extensive
experiments to validate our hypothesis, supported by the cur-
rent preliminary results.

5 DISCUSSION AND CONCLUSION

In this research, we focused on morphological compu-
tation in a robot’s perception that exploits the PAM’s fea-
tures. In particular, we focused on the possibility of PAMs
to contribute to morphological computation of robots driven
by these actuators. To this end, we proposed an analysis
method based on transfer entropy and applied this method to
the data taken from an experiment in which a musculoskele-
tal robot opens a door. As a consequence, it was qualitatively
confirmed that the PAMs actuating the musculoskeletal robot
arm can be used to obtain environmental information such as
physical contacts and the dynamics of the robot even when
these are actively actuated. Additionally, it was verified that
the analysis method can be applied without specifying be-
forehand which PAMs should be focused.

The result in this paper can be used for finding out which
PAM are useful to learn or improve the musculoskeletal
robot’s motions. In fact, one of biggest problems to con-
trol complex musculoskeletal robots driven by PAMs is the
high dimensionality of the state and the motor command
spaces derived from the structural complexity. The experi-
ment showed the possibility that few PAMs could be able to
generate the robot’s motion appropriately and could be used
as sensors to extract information on the surrounding environ-
ment.

However, the result obtained in this research is still very
preliminary. Therefore, it will be necessary to investigate

both of the robot’s structure and the analysis method for clar-
ifying morphological computation offered by musculoskele-
tal structures.
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