
Batch fast update algorithm for incremental association rule discovery

Araya Ariya
1
 , Worapoj Kreesuradej

2

King Mongkut’s Institute of Technology Ladkrabang, Thailand

1
araya_aa@hotmail.com ,

2
worapoj@it.kmitl.ac.th

Abstract: When new transactions are inserted into an original database, the existing rules may be change. An incremental

association rule mining is an approach to deal with such problem. This paper proposes an algorithm for mining incremental

association rules, called batch fast update (BFUP). The proposed algorithm improves the performance of FUP algorithm by

reducing a number of scanning times of an original database. The experimental results show that an execution time of BFUP is

much faster than that of FUP.

Keywords: Incremental association rules mining, Association rule mining, Data mining

1. INTRODUCTION

An association rule mining, one of the important tasks

in data mining, is a well-known research topic that many

researchers propose a large number of algorithms for

solving association rule discovering problems. This

problem was first presented by Agrawal et al [1] which

analyzes the behavior of customer purchasing to help

business make a decision. The results show co-occurrence

buying items called frequent patterns, which can generate

interesting rules. From that research, the problem statement

of an association rule mining is defined as follows.

Let I = {I1,I2,…,Im} be a set of literal items. DB is a

database which contains transactions. Each transaction T is

a set of items where T  I. Given X is an item and X  I.

Each transaction contain X if and only if X  T. Let X and

Y are an item where X  I, Y  I and X  Y0. Each set of

items , itemsets, is called a frequent itemset if and only if its

support is greater than or equal to support threshold s%. It

calculates from a number of transactions in DB that contain

X  Y. An association rule can be shown in XY form.

Each frequent itemset can be made the association rule if

and only if it is satisfied by confidence threshold c% which

calculates from a number of transactions in DB that contain

X and also contain Y. Both s% and c% are specified by

user.

After an association rule mining was revealed, it

motivated many researchers to extend this research area in a

lot of issues. An incremental association rule mining is the

one of an association rule mining issue which maintains

association rules when new transactions are appended to an

original database.

One research issue of an incremental association rule

mining is reducing running time of the algorithms by

minimizing the number of times to scan an original

database. This paper also works on this issue. An algorithm

for mining incremental association rules, called batch fast

update (BFUP), is proposed. This algorithm has only one

original database scanning.

The paper is organized as follows. The literatures of an

association rule mining and an incremental association rule

mining are reviewed in section 2. The problem statement of

an incremental mining on association rule in dynamic

database and FUP algorithm are detailed in section 3. The

proposed algorithm and its experiment are presented in

section 4 and 5 respectively. The paper conclusion and

future work are briefed in section 6.

2. RELATED WORK

Mining association rules was first proposed by Agrawal

et al [1] which finds a correlation between itemsets in a

transaction database. The algorithm has 2 steps: finding

frequent itemsets (sometimes they are called large itemsets)

and generating rules. Subsequent years, Apriori [2], the

most popular algorithm, was proposed to discover frequent

itemsets.

When a database, called a dynamic database, is inserted

new transactions, frequent itemsets can be changed after

inserting new transactions into the dynamic database.

Therefore, an association rule discovery algorithm for a

dynamic database has to maintain frequent itemsets when

new transactions are inserted into the dynamic database.

One approach to find the new frequent itemsets is to

rerun Apriori algorithm for the whole transactions of the

dynamic database. This approach is not efficient because all

the computation done initially at finding out the old large

itemsets are wasted and all large itemsets have to be

computed again from scratch [3].

Cheung et al [3] proposed fast update algorithm, FUP,

to solve a rules maintenance problem by using the previous

knowledge to find frequent itemsets in updated database.

The concept of FUP is re-using frequent itemsets of

previous mining to update with frequent itemsets of an

incremental database. Although FUP can decrease a

number of candidate itemsets for scanning original

database, it still needs to scan an original database k times

when new frequent itemsets are found. This can degrade the

performance of FUP algorithm.

In our observation, the advantage of FUP are re-using

frequent itemsets of a previous mining to prune itemsets

which cannot be a frequent itemset in updated database and

reducing candidate itemsets to scan in an original database.

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12),
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 799

However, the disadvantage of FUP is the algorithm needs

to scan an original database equal to a size of k frequent

itemsets, e.g., if maximum size of k frequent itemsets is

k=5, FUP needs to scan an original database for 5 times.

From this problem, this paper proposes an incremental

association rule mining algorithm to improve the

performance of FUP algorithm by reducing a number of

scanning times of an original database.

3. INCREMENTAL ASSOCIATION RULES

MINING

3.1 Problem statement

In a dynamic database, new transactions are appended

to a database; accordingly, the previous valid rules may be

invalid. The problem statement for an incremental

association rule is defined as follows.

Let DB is an original database. An increment database

db is the new transactions which are inserted into DB.

Updated database UD is the combining between original

database and increment database, i.e, UD = DB  db. A

number of transactions of an original database, an

increment database and an updated database are |DB|, |db|

and |UD| = |DB|+|db| respectively.

Before updating activity, L is the frequent itemsets in

DB if and only if X.support ≥ s×|DB|. After updating

activity, L’ is the frequent itemsets in updated database if

and only if X.support ≥ s×|UD|.

According to Tsai et al [4], when news transactions are

insert into an original database, an itemset, i.e. X, can be

categorized into 4 cases:

Case 1: X is a frequent itemset in both DB and UD

Case 2: X is a frequent itemset in DB and an infrequent

itemset in UD

Case 3: X is an infrequent itemset in DB and a frequent

itemset in UD

Case 4: X is an infrequent itemset in both DB and UD

Form these cases of itemsets are mentioned above, it is

easy to discovered updated frequent itemsets for the itemset

of case 1 and 2 because their count in DB and UD are

known, therefore, an updating activity is a trivial task. The

itemset in case 4 is unimportant because it cannot change

an association rule. The most serious case is the 3
rd

 because

it needs to rescan an original database for updating its

count. Thus, discovering itemsets in case 3 is the most

important problem in an incremental association rule

mining. In section 3.2, the method to solve that problem is

reviewed and section 4, batch fast update algorithm is

presented how to improve a performance of FUP.

3.2 FUP algorithm

Apriori [2] is successful for finding frequent itemsets in

a database. However, it is unsuitable for mining in dynamic

database. Cheung et al [3] have been proposed an

incremental algorithm which has a good performance for

mining association rules in dynamic database. The concept

of FUP is reviewed briefly in this section.

The operation of FUP has 2 phases: 1-iteration and k-

iteration where k ≥ 2. In the first phase, an increment

database is scanned for finding candidate 1-itemsets C1 and

its count. After that loser and winner itemsets are found.

Finding loser and winner itemsets, C1 are divided into 2

types: a member and not a member of previous frequent

itemsets in an original database. The first type is updated its

count and pruned loser itemsets if its updated count is less

than s*|UD|. The second type is scanned to an original

database if and only if it is a frequent itemset (winner) in an

increment database, i.e., its count is greater than or equal to

s*|db|. Both types which satisfy by them threshold can be

frequent 1-itemsets in updated database L1’(winner).

The second phase has 3 steps: filtering out loser

itemsets, generating candidate k-itemsets Ck≥2 and finding

new frequent itemsets. Firstly, FUP filters out losers from

Lk (Lk in DB). Given YLk and X  Lk-1 – Lk-1’, Y is a

loser iff XY. For the remaining Lk

, they are scanned to an

increment database and updated their count. Then they are

checked for finding a winner or loser itemset similar to the

first phase.

Secondly, Ck is generated by using Apriori-gen. Any Ck

is pruned if and only if Y  Ck where Y is the loser from

Lk. This step is a key to reduce a number of Ck before

scanning an original database. Finally, new frequent

itemsets Lk’ are found with the same method as the first

phase.

4. BATCH FAST UPDATE ALGORITHM
In this section, an algorithm for mining incremental

association rules, batch fast update (BFUP) is presented.

The proposed algorithm is assumed that two thresholds,

minimum support s% and minimum confidence c%, are

static. This algorithm needs only one original database pass

and infrequent itemsets are not required. The notation used

in this section is defined in Table 1.

Table 1. The notation for Batch fast update algorithm

notation meaning

DB original database

db increment database

UD updated database

s minimum support

Lk
DB

 frequent k-itemset in DB

Lk
UD

 frequent k-itemset in UD

Ck candidate k-itemset

|DB| a number of transactions in DB

|db| a number of transactions in db

|UD| a number of transactions in UD

X.count a support of an itemset

Temp_scanDB itemsets which are scanned in DB

The algorithm has 2 phases: an increment updating

phase and a re-scanning original database phase. The first

phase is shown in figure 1. At each iteration, an increment

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12),
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 800

database is scanned to find candidate itemsets, i.e., Ck, and

their support counts. Basically, candidate itemsets are

divided into 2 types: a member and not a member of

previous frequent itemsets of an original database.

Candidate itemsets of the first type becomes updated

frequent itemsets, i.e., Lk
UD

, if and only if their updated

support count is greater than or equal to s*|UD|. Candidate

itemsets of the second type are kept in temp_scanDB for

rescanning in an original database if and only if their count

plus |DB|-1 is greater than s*|UD|. On the other hand,

Candidate itemsets of the second type are pruned if and

only if their count plus |DB|-1 is less than s*|UD|.

For generating candidate itemset Ck, Apriori-gen is

applied. Apriori generates Ck with Lk-1*Lk-1, whereas BFUP

generates Ck with Lk
UD

 * temp_scanDBk.

The second phase of BFUP algorithm is shown in figure

2. After an increment updating phase is ended, all itemsets

in temp_scanDB are re-scanned in an original database and

updated their support count. Then, all itemsets in

temp_scanDB are checked to find updated frequent

itemsets. Let X  temp_scanDB, X can be an updated

frequent itemset, i.e., Lk
UD

, if and only if X.count ≥ s*|UD|.

Algorithm 1 An increment updating phase

()

Input : db,s,Lk
DB,C1

DB,|DB|

Output: Lk
UD

1 |UD|=|DB|+|db|

2 k = 1

3 scan db for all X

4 for all XL1
DB or XC1

DB

5 update X.count

6 if X.count ≥ s*|UD|

7 X  Lk
UD

8 for all X  L1
DB or XC1

DB

9 if X.count+|DB|-1 ≥ s*|UD|

10 X  temp_scanDB

11 k=2

12 while (Lk-1
UD  temp_scanDBk) > 1

13 Ck = Lk-1
UD * temp_scanDBk

14 // using Apriori_gen()

15 scan db for all Ck

16 for all X Ck do

17 for all X  Lk
DB

18 update X.count

19 if X.count ≥ s*|UD|

20 X  Lk
UD

21 for all X  Lk
DB

22 if X.count+|DB|-1 ≥ s*|UD|

23 X  temp_scanDB

24 k++

25 end loop

26 rescan_original()

27 Lk
UD = Lk

UD  tempL

28 return Lk
UD

Fig. 1. An increment updating phase

Algorithm 2 a re-scanning original

database phase ()

Input DB, temp_scanDB,s,|UD|

Output tempL

1 if temp_scanDB  

2 scan DB for all X  temp_scanDB

3 update X.count

4 if X.count ≥ s*|UD|

5 X  tempL

6 endif

7 return tempL

Fig. 2. A re-scanning original database phase

5. EXPERIMENT

The proposed algorithm in this paper aims to improve

the performance of FUP. To evaluate the performance of

batch fast update (BFUP) algorithm, this algorithm is

implemented and tested on a PC with a 2.93 GHz Intel Core

i7 and 3 GB main memory. The experiment is tested with 2

synthetic datasets which are generated by using technique

in Agrawal [1]. The first dataset is T10I4D100K which has

100,000 transactions. The second dataset is T10I4D50K

which has 50,000 transactions. Both datasets are appended

by an increment database that has 1,000 transactions.

For the first original database, i.e., T10I4D100K, the

experiment is conducted with 0.1%, 0.3% and 0.5%

minimum support thresholds. The average of an execution

time is shown in table 2 and figure 3 respectively. For

comparison, the results are compared with FUP.

Table 2. Average of Execution time for I10T4D100K

min

sup
algorithm

execution

time (sec.)

a number

of

frequent

itemset

maximum

frequent

itemset

(size of k)

0.1%
FUP 175890.2901

17,127 L10
BFUP 43580.3014

0.3%
FUP 19645.1002

1,991 L7
BFUP 11678.5801

0.5%
FUP 9771.1612

862 L2
BFUP 9105.8170

For the second original database, i.e., T10I4D50K, the

experiment is conducted with 0.2%, 0.3% and 0.4%

minimum support thresholds. The average of an execution

time is shown in table 3 and figure 4 respectively.

From the results of the both datasets, they are shown

that an execution time of BFUP is much faster than that of

FUP. Furthermore, we observe that the more size k is

increasing, the execution time between FUP and BFUP is

more different.

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12),
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 801

Fig. 3. Execution time comparison for I10T4D100K

Table 3. Average of Execution time for I10T4D50K

min

sup
algorithm

execution

time (sec.)

a number

of

frequent

itemset

maximum

frequent

itemset

(size of k)

0.2%
FUP 36012.0041

5,307 L10
BFUP 15402.0908

0.3%
FUP 17695.8894

1,995 L7
BFUP 12906.0013

0.4%
FUP 12363.9417

1,051 L3
BFUP 10866.7162

Fig. 4. Execution time comparison for I10T4D50K

6. CONCLUSION

An incremental association rules mining algorithm

called batch fast update (BFUP), is proposed. The concept

of this algorithm is based from Apriori and FUP algorithm.

Although batch fast update algorithm has an execution time

better than that of FUP, a large number of temp_scanDB

are kept. In the future research, the algorithm for reducing

temp_scanDB will be proposed.

7. REFERENCES

[1] Agrawal R, Imielinski T, Swami A (1993), A

mining association rules between sets of items in large

database, In Proceeding of the ACM SIGMOD Int’l Conf.

on Management of Data (ACM SIGMOD’93), Washington,

USA, May 1993, pp.207-216.

[2] Agrawal R, Srikant R (1994), Fast algorithm for

mining association rules, In Proc. 20
th

 Int. Conf. Very Large

DataBases (VLDB’94), Santiago, Chile, September 12-15,

1994, pp.487-499.

[3] Cheung D.W., Han J, Ng V.T., Wong C.Y.,

Maintenance of Discovered Association rules in Large

Databases: An incremental updating technique, In 12
th

IEEE International Conference on Data Engineering, pp

106-114, 1996.

[4] Tsai Paulry S.M., Lee Chih-Chong, Chen Abree

L.P. (2005), An Efficient Approach for Incremental

Association Rule Mining, Proceedings of the third Pacific-

Asia Conference on Methodologies for Knowledge

Discovery and Data Mining, Lecture Notes In Computer

Science, Vol. 1574 archieve, 1999.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0.1% 0.3% 0.5%

FUP

BFUP

I4T10D100K

ex
ec

u
ti

o
n

 t
im

e
(s

ec
)

sup

0

5000

10000

15000

20000

25000

30000

35000

40000

0.2% 0.3% 0.4%

FUP

BFUP

I4T10D50K

ex
ec

u
ti

o
n

 t
im

e
(s

ec
)

sup

The Seventeenth International Symposium on Artificial Life and Robotics 2012 (AROB 17th ’12),
B-Con Plaza, Beppu, Oita, Japan, January 19-21, 2012

© ISAROB 2012 802

