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Abstract: In this paper, we investigate the effect of synaptogenesis on memories in the brain, using the abstract associative
memory model, Hopfield model with the zero-order synaptic decay. Using the numerical simulation, we demonstrate the pos-
sibility that synaptogenesis plays a role in maintaining recent memories embedded in the network while avoiding overloading.
For the network consisting of1000 units, it turned out that the minimum decay rate to avoid overloading is0.02, and the optimal
decay rate to maximize the storage capacity is0.08. We also show that the average numbers of replacement synapses at each
learning step corresponding to these two values are1187 and21024, respectively.
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1 INTRODUCTION

Memory was considered to consist of three processes: (i)
learning and (ii) keeping information in the network, and
then, (iii) recalling it when needed. Hopfield model [1],
the best-known associative memory model, could reproduce
the form of memory in the brain. By changing the synaptic
strengths, the model stored memory patterns in the network.
Thereafter, this network could retrieve the stored pattern even
if given its noisy version. The properties of the associative
memory model have been investigated over several decades
[1]-[4].

The ordinary Hopfield model has a critical number of
memory patterns that can be stably stored,0.138N , where
N is the system size. The additional learning of new patterns
beyond the value overloads the network system, and makes
no patterns retrievable [4].

As a matter of fact, the past associative memory model
missed the fourth factor of memory, i.e., forgetting old in-
formation. If the dynamics of the synaptic strength in the
network have decay or saturation, overloading does not oc-
cur. The forgetting model, an alternative associative memory
model to avoid overloading, was proposed by Mézard et al.
[5]. In the forgetting model, every time the network learns
a new pattern, the synaptic strength decays in proportion to
itself. In this scheme, the old memory traces are erased ex-
ponentially with time. However, as yet there is no conclusive
experimental evidence for the existence of such a system in
the brain.

Recently, it has been reported that synaptogenesis, birth
of synapses, continues to take place in certain regions of
the postnatal brain including the hippocampal regions [6],[7].
Synaptogenesis, i.e., replacement of old synapses with new

ones, seems to be crucial for the formation of neural net-
works. Thus, it affects neural network functions, especially
memory formation. Furthermore, according to the previ-
ous neurophysiological experiment, synapses with smaller
strength tend to be replaced with higher probability [7]. This
raises questions about how this synaptogenesis affects mem-
ories in the brain. Should synaptogenesis, which breaks the
memory circuit, be a negative factor for memories embedded
in the network?

In this paper, we investigate the effect of this synapto-
genesis on memories, modeling it mathematically: Hopfield
model with the zero-order synaptic decay. In our model, ev-
ery time the network learns a new pattern, all the synaptic
strengths decay a constant value , i.e., decay rateα. This
decay process represents the characteristics of the synapto-
genesis more exactly than the forgetting model: The smaller
synaptic strength is, the more easily synaptogenesis occurs.

From a computational perspective, we demonstrate the
possibility that synaptogenesis plays a role in maintaining
recent memories embedded in the network while avoiding
overloading. Moreover, we show that the storage capacity
(maximal number of retrievable patterns in the network) of
our model depends on the decay rate. For the network con-
sisting of1000 units, it turned out that the minimum decay
rate to avoid overloading,αmin, is 0.02, and that the optimal
decay rate to maximize the storage capacity,αopt, is 0.08.
Finally, we show how many synapses are replaced with new
ones at each learning step when the decay rate takes these
two critical values. For the network consisting of1000 units,
it turned out that the average number of replacement synapses
corresponding toαmin is 1187, and that corresponding to
αopt is 21024.
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This paperis organized as follows: Section 2 gives a for-
mulation of the zero-order synaptic decay process in the Hop-
field model. Section 3 shows the numerical simulation results
using our model. Section 4 gives our conclusions.

2 MODELING THE SYNAPTOGENESIS

2.1 Network dynamics

We begin by formulating a recurrent neural network with
N units andN(N − 1) synapses. We assume that all the
units work synchronously at discrete timet = 1, 2, · · ·. The
network dynamics are determined by

si(t+ 1) = sgn
( N∑
j=1(̸=i)

Jijsj(t)
)
, (1)

wheresi(t) is the state of uniti at discrete timet. Jij denotes
the strength of the synapse connecting unitj to i, and it is
symmetrical, i.e.,Jij = Jji. We assume that the network is
assumed to have no self-interaction,Jii = 0. In Eq.(1), the
sign functionsgn(x) denotes the next statesi(t + 1) of unit
i as

sgn(x) =

{
1 x ≥ 0,

−1 otherwise.
(2)

According to Eqs.(1) and (2), when a weighted sum of
its inputs

∑N
j=1(̸=i) Jijsj(t) exceeds0 (threshold), the next

statesi(t + 1) becomes1, representing the neuronal firing.
On the other hand,s(t + 1) = −1 represents that the unit is
not firing at t + 1. Equation (1) defines the time evolution
of the system state. For any symmetric connection matrix
Jij ; Jij = Jji, the network system has finite possible states.
Starting from any arbitrary initial state, the system state of the
Hopfield model always reaches an equilibrium or a periodic
solution, and the period is known to be no more than2.

2.2 Associative memory with the zero-order synaptic

decay

Each elementξµi of theµ-th memory patternξµ, which is
stored in the network, takes±1, and is generated indepen-
dently with the probability,

Prob[ξµi = ±1] = 1

2
. (3)

Here, weconsider the following learning dynamics of
the synaptic strengthJij , reflecting the characteristics of the
synaptogenesis. The synapse which has its small strength
∥Jij∥ tends to be replaced with new ones. We assume that
if the synaptogenesis occurs, the new synapses rebuilds the
connection to all the units except for self-coupling. We use
the following synaptic decay process, which is equivalent to
the above replacement procedure of synapses.
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Fig.1: Dynamicsof the zero-order synaptic decay process (the sec-
ond term of the right-side Eq.(4), ordinate). The quantityτ (ab-
scissa) denotes time. Convergence speed (i.e., decay rateα = 0.2)
is constant with the sign and the value ofX(τ). Thus, the smaller
the synaptic strength is, the faster it converges to zero.

∆Jij = ξµi ξ
µ
j − αsgn[Jij ], (4)

whereα is the decay rate. The indexµ of ξµi denotes the
learning step. Note thatµ = 1 corresponds to the latest learn-
ing step. The larger serial numberµ > 1 signifies that pattern
ξµ was stored earlier thanξ1.

The first term of the right-side Eq.(4) denotes the Heb-
bian learning in the Hopfield model. Every time the network
learns a new patternξµ, Jij is increased byξµi andξµj , not
depending on the global structure of the state.

On the other hand, the second term of Eq.(4) denotes the
zero-order synaptic decay process, modeling the synaptoge-
nesis. Every time the network learns a new pattern,Jij de-
cays at a constant rateα. Figure 1 illustrates the dynam-
ics of the second term of Eq.(4). The smaller the synaptic
strength is, the faster it converges to zero. On the other hand,
the larger synaptic strength takes more time to converge to
zero. If the sign of the synaptic strength inverts (Jij ≥ 0 and
Jij + ∆Jij < 0, or Jij ≤ 0 andJij + ∆Jij > 0), then
the synaptic strength is reset (Jij = 0). This procedure rep-
resents that the synapse with the small strength dies and the
new one is born.

3 NUMERICAL SIMULATION
For simplicity, we assumed that neither number of units

nor synapses does change over time in the following numer-
ical simulation. The network consisting of1000 neurons
learnedM memories,ξ1, · · · , ξM , one by one. The max-
imum value ofM was set to400 (i.e., 0.4N ), which was
much larger than the critical value of the ordinary Hopfield
model: 0.138N . All of the initial synaptic strengths were
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set tozero,{Jij} = 0. Every time the network learned a
memory pattern, the synaptic strength∥Jij∥ was weaken by
the decay rateα. The smaller∥Jij∥ is, the more frequently
synaptogenesis occurs, i.e.,Jij = 0. Each stored patternξµ

(µ = 1, 2, · · · ,M ) was given as a initial states(0) in the
network dynamics. We assume that the system is forced to
stop when the present statesi(t) equals the second to last one
si(t−2) in the network dynamics, considering the periodical
solution of the network dynamics. Simulations were carried
out on a computer by varying the decay rateα.

First, we investigate how many patterns are retrievable in
the network with the zero-order synaptic decay. Because the
synaptic decay process implies erasing the old memory traces
gradually, a limit exists on the number of retrievable patterns.
As the criterion of successful recall, we used the overlapmµ

between theµ-th memory patternξµ and the stationary sys-
tem states:

mµ =
1

N

N∑
i=1

ξµi si. (5)

If mµ ≥ 0.8, we regardedξµ as the retrievable pattern, and
we counted it. The results are shown in Fig.2, which plots
the number of retrievable patterns as a function of the num-
ber of stored ones,M . According to Fig.2, we see that the
larger the decay rateα is, the earlier forgetting starts: for
α = 0, forgetting started at aroundM = 140; for α = 0.2, it
started at aroundM = 30; for α = 0.4, it started at around
M = 10. Our interest is in the properties of the network
when the number of retrievable patterns is nearly saturated.
The network forα = 0, i.e., the ordinary Hopfield model
could not recall any memory pattern whenM > 220. On
the other hand, forα ̸= 0, the Hopfield model with the zero-
order synaptic decay could recall an almost constant number
of memories whenM > 40.

Second, we investigate how old stored patterns are retriev-
able in the network with the zero-order synaptic decay. Fig-
ure 3 plots the overlapmµ as a function of the learning step
µ for two values of the decay rateα. As shown in Fig.3, only
the recent memories could be recalled correctly (mµ ≥ 0.8).
Moreover, Fig.3 predicts a phase transition phenomenon de-
pending on the learning stepµ: If the learning step is smaller
than the storage capacity (µ < ψ), the memory retrieval
state (mµ ≈ 1) is stable. On the other hand, if the learn-
ing step exceeds the storage capacity (µ > ψ), the memory
retrieval state becomes unstable, and the so-called spin-glass
state (mµ ≈ 0) appears.

Figures 2 and 3 show the number of retrievable patterns
depends on the decay rateα. Thus, we investigate two critical
decay rate: the minimum value to avoid overloading,αmin,
and the optimal value to maximize the storage capacity,αopt.
Figure 4 illustrates the storage capacityψ of the zero-order
decay model as a function of the decay rateα. It turned out

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250  300  350  400

nu
m

be
r 

of
 r

et
rie

va
bl

e 
pa

tte
rn

s

number of stored patterns M

α=0.2
α=0.4

α=0

Fig.2: Relationbetween the number of stored patterns,M (ab-
scissa) and that of retrievable patterns (ordinate). Each curve is the
average of10 samples (N= 500), illustrating how many memo-
ries so far learned were remembered. Solid curve is the result of the
zero-order synaptic decay model withα = 0.2, dashed one is that
with α = 0.4, and dotted one is that withα = 0, i.e., the ordinary
Hopfield model.

that forN = 1000, the minimum decay rate to avoid over-
loading (αmin, a point at the intersection of the abscissa with
the solid curve in Fig.4) is0.02. The optimal decay rate to
maximize the storage capacity (αopt, a point at the peak of
the solid curve in Fig.4) is0.08.

Finally, we approximate the number of replacement
synapses at each learning step corresponding to these two
critical decay rates. In other words, we investigate how many
synapses should be replaced with new ones on average at
each learning step to avoid overloading, or to maximize the
storage capacity. Figure 5 plots the number of replacement
synapses at each learning step forαmin andαopt, respec-
tively. According to Fig.5, as time advances, the number of
replacement synapses becomes nearly constant. Averaged by
the number of stored patterns,M , the minimum number of
replacement synapses at each learning step to avoid overload-
ing is 1187, which corresponds toαmin. Moreover, the op-
timal one to maximize the storage capacity is21024, which
corresponds toαopt.

4 CONCLUSION
In order to investigate the effect of synaptogenesis on

memories embedded in the neural network, we proposed the
Hopfield model with the zero-order synaptic decay. Using
the numerical simulation, we demonstrated the possibility
that synaptogenesis plays a role in maintaining recent mem-
ories while avoiding overloading. Moreover, it turned out
that the storage capacity of this model depends on the de-
cay rateα, which corresponds to the number of replacement
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Fig.3: Overlapmµ (ordinate) between the stationary system state
s and theµ-th memory patternξµ (abscissa). Note thatµ = 1

represents the most recently learned pattern, and that the largerµ is,
the olderξµ is.N = 1000, andM = 400. Heavy solid and dashed
curves are the results whenα = 0.2, 0.4 (1 sample), respectively.
Vertical solid and dashed curves are the storage capacityψ when
α = 0.2, 0.4, respectively. Both values are taken from the results
shown in Fig.4.

synapses. ForN = 1000, the minimum decay rate to avoid
overloading,αmin, is 0.02 and it is equivalent to an average
of 1187 synapses replaced with new ones at each learning
step. The optimal decay rate to maximize the storage capac-
ity, αopt, is 0.08 and it is equivalent to an average of 21024
synapses replaced with new ones.

The followings are our possible future works: (i) Since
early times, it has also been reported that neurogenesis con-
tinues to take place in certain regions of the postnatal brain
including the hippocampal regions[8],[9]. Moreover, it has
been also demonstrated using numerical simulations that
the Hopfield model with unit replacement, mathematically-
modeled neurogenesis, avoids overloading and keeps the re-
cent memories[10]. Thus, comparison of the properties be-
tween the synaptogenesis (zero-order synaptic decay model)
and the neurogenesis (unit replacement model) should be
done. (ii) Characteristics of the Hopfield model depend
largely on how items are encoded in the pattern vectors to
be stored. When most of the components of encoded pat-
terns to be stored are inactivated and only a small share of
the components are activated, the encoding scheme is said
to be sparse[2],[3]. Investigation how synaptogenesis affects
the sparsely encoded network will be done.
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