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Abstract: This paper presents the finding of the research we conducted to evaluate the variability of signal release probability 

at Hebb’s presynaptic neuron under different firing frequencies in a dynamic stochastic neural network. According to our 

results, synaptic redistribution has improved the signal transmission for the first few signals in the signal train by continuously 

increasing and decreasing the number of postsynaptic ‘active receptors’ and presynaptic ‘active-transmitters’ within a short 

time period. In long-run at low-firing frequency it has increased the steady state efficacy of the synaptic connection between 

Hebbian presynaptic and postsynaptic neuron in terms of the signal release probability of ‘active-transmitters’ in the 

presynaptic neuron. However, this ‘low-firing’ frequency of the presynaptic neuron has been identified by the network when 

compared it to the ongoing frequency oscillation of the network. 
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1 INTRODUCTION 

As per recent biological findings a synaptic connection 

between two neurons is strengthened by increasing the 

number of postsynaptic receptor channels or by increasing 

the probability of neurotransmitter release at presynaptic 

neuron. This functional behavior at synapses is varied if 

long-term plasticity interacts with the short-term depression, 

Abbott and Nelson [1]. Short-term depression is an activity 

dependent reduction of neurotransmitters from the readily 

releasable pool at presynaptic neurons, Zucker [2]. When 

long-term plasticity interacts with the short-term depression, 

the effect is called synaptic redistribution. This synaptic 

redistribution increases the probability of neurotransmitter 

release at presynaptically; and subsequently increases the 

efficiency of signal transmission between neurons and 

decreases presynaptic readily releasable pool size, Abbott 

and Nelson [1]. Therefore, the high-frequency dependent 

increase in synaptic response for the first few spikes in the 

spike-train is caused because of the redistribution of the 

available synaptic efficacy and not because of the increase 

of synaptic efficacy at the steady-state. However, at low-

firing-frequencies of presynaptic neuron such as < 10 Hz, 

an increase of synaptic efficacy at steady state has been 

observed. This increase of synaptic efficacy depends on the 

short-term plasticity factors such as probability of 

neurotransmitter release and time constant of recovery, 

Markram and Tsodyks [3]. Conversely Okatan and 

Grossberg [4] suggest that pairing of Hebbian neuron to 

reach the steady state, might be frequency-dependent and as 

a result the time taken to reach to the steady-state at high-

firing-frequency of presynaptic neuron may be longer than 

at lower-presynaptic-firing frequencies; therefore even 

there is steady-state increase of the synaptic efficacy at 

high-firing frequency of presynaptic neuron, it is not well 

observed due to the effect of short-term synaptic plasticity 

factors on the synaptic efficacy. Lisman and Spruston [5] 

have further added that this increase or decrease of synaptic 

efficacy at steady state is not merely based on spike arriving 

time to the synapses but also on the level of postsynaptic 

depolarization, rate of synaptic inputs and the phase of 

synaptic input relative to the ongoing frequency oscillations.   

2 METHOD 

Our modeled neuron had thousands of artificial units, 

named ‘transmitters’ and ‘receptors’. The ‘transmitters’ in a 

presynaptic neuron contacted the corresponding ‘receptors’ 

in postsynaptic neuron dynamically according to the 

presynaptic activity by forming an artificial synaptic 

connection between the two neurons. Therefore, one can 

presumes that synaptic connection between the presynaptic 

neuron and postsynaptic neuron in our network as a 

dynamic connection which mediates the 

intercommunication between the presynaptic ‘transmitters’ 

and the corresponding postsynaptic ‘receptors’. 

Furthermore these artificial units were two-state stochastic 

computational units which stochastically updated their 

signal release probability at time t, i.e. )(tP , according to 

the history of their activity by adapting to the mathematical 

model of Maass and Zador [6] which describes the signal 
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release probability as a function of spike arrival time and 

the effect of short-term plasticity. The active state of a given 

artificial unit at a specified time t was determined by the 

release probability at that time and a threshold value theta 

( θ ). The threshold θ  was updated according to the 

feedback of a stability promoting mechanism which sensed 

the neuronal local excitation and the corresponding 

postsynaptic excitation as defined in eq. (1) and eq. (2). 

Thus, an artificial unit was in active state at time t 

if θ>)(tP and was allowed to transmit/receive signals 

between neurons; otherwise it was in inactive state. 

3 EXPERIMENT 

An experiment was conducted on fully connected neural 

network which had four neurons namely A, B, C and D. The 

neuron A and neuron B were set to process similar to the 

long-term plasticity by setting time decay constants to 30 

min while neuron C and D simulated the short-term effects 

on the network with time decay constants 100 sec and 15 

min respectively. We have shown that with this setting of 

the network, the neurons A and B formed a Hebbian pairing 

and was capable of demonstrating the characteristics 

explained in fundamental learning theories; Hebb’s 

postulate and Stent’s anti-Hebbian postulate, see Fernando, 

Yamada and Marasinghe [7]. The experiment had three 

stages where each stage consisted of two phases; correlated 

and uncorrelated, and each phase consisted of two sessions, 

namely training and testing sessions. In between sessions, a 

random delay was introduced. Throughout the experiment, 

the firing frequency of neurons B, C, and D remained in a 

constant firing rate at 1 Hz while neuron A updated its 

firing frequency accordingly as it was moved from one 

stage to the other. At stage-1, the firing frequency of neuron 

A was at 1 Hz, at stage-2 it was 2 Hz and stage-3 it was 0.5 

Hz. Therefore, comparatively neuron A was in high-firing 

frequency at stage-2 and was in low-firing frequency at 

stage-3. At stage-1 the network was allowed to stabilize its 

activity as a one unit because all the neurons were firing at 

1 Hz. Signals in terms of sine waves were externally fed to 

the network through neuron A and neuron B based on the 

phase and the session they were in. The phases were named 

according to the frequency of the sine waves applied to 

neuron B. Throughout the experiment the frequency of the 

sine waves applied to neuron A was at 1=′Af Hz and the 

frequency of the sine waves applied to neuron B ( Bf ′ ) was 

randomly selected from interval (0.95, 1.05) Hz at the 

correlated phase. At the uncorrelated phase Bf ′  was 

randomly selected either from interval (0.5, 0.8) Hz or from 

interval (1.2, 1.5) Hz. At the training sessions, the external 

signals were fed to the both neurons but at the testing 

sessions signals were not externally fed to the neuron B. At 

testing sessions, threshold values of all the four neurons 

were not updated; the threshold values trained at the 

training sessions were taken as constants at the 

corresponding testing sessions. Each neuron had 60,000 

artificial units which were uniformly distributed between 

‘receptors’ and ‘transmitters’; and subsequently ‘receptors’ 

were distributed uniformly between ‘receptor-groups’. 

Initially 1% of the receptors in each receptor group and 1% 

of the ‘transmitters’ in each neuron were set to an active 

state. Fig.1 shows the architecture of the network in abstract.  

Fig.1. Architecture of the network with dynamic 

synaptic connections. The developed network had four 

neurons, each neurons had three ‘receptor-groups’, and set of 

‘transmitters’. IT ( Iθ ) denotes the ‘transmitters’ in neuron I and 

its threshold value. Similarly, )( JIJIR θ denotes the ‘receptor-

group’ in neuron J that is contacted by the ‘transmitters’ in neuron 

I. For simplicity the figure illustrates the communication between 

the ‘transmitters’ in neuron A with relevant ‘receptor-groups’ of 

the postsynaptic neurons only. The dotted connecting lines in the 

network indicate the dynamicity of the synaptic connection 

between neurons since it depends on the number of ‘active-

transmitters’ in neuron A and their signal release probability, and 

the number of ‘active-receptors’ in the relevant receptor-group of 

the corresponding postsynaptic neuron. 
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4 RESULTS 

The distribution of the number of ‘active-transmitters’ 

in neuron A and their probability of signal release at each 

stage, and the distribution of the number of ‘active-

receptors’ in the receptor group BAR that is contacted by the 
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‘transmitters’ in neuron A through the artificial synaptic 

connection between neuron A and neuron B are shown from 

fig.2 to fig.5.  

 
 

 

 
 

 

 
 

 

Fig.2. Distributions of ‘active-transmitters’ in neurons A and B at stage-1 over the time (a): ‘active-transmitters’ in neuron A,  

(b): ‘active-transmitters’ in neuron B, (a-1): Enlarged version of subfigure (a), and (b-1): Enlarged version of subfigure (b).  

Fig.3. Distributions of ‘active-receptors’ in neurons A and B at stage-1 over the time (a): ‘active-receptors’ in neuron A, (b): ‘active-

receptors’ in neuron B and in RBA respectively, (a-1): Enlarged version of subfigure (a), and (b-1): Enlarged version of subfigure (b)  

Fig.5. Distributions of active components in neurons A and B at stage-3 over the time (a): ‘active-receptors’ in neuron A,  

(b): ‘active-receptors’ in neuron B and in RBA respectively, (c): ‘active-transmitters in neuron A, (d): ‘active-transmitters’ in neuron B 

Fig.4. Distributions of active components in neurons A and B at stage-2 over the time (a): ‘active-receptors’ in neuron A,  

(b): ‘active-receptors’ in neuron B and in RBA respectively, (c): ‘active-transmitters in neuron A, (d): ‘active-transmitters’ in neuron B 
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Fig.6. Box plot in each subfigure illustrates the variation of the release probability of the interacted ‘active-transmitters’ of neuron A (i.e., 

‘active-transmitters’ that communicated with ‘receptors’ in RBA receptor-group during the session). The inner histograms depict the variation 

of the number of interacted ‘active-transmitters’ in neuron A over the time against the signal release probability at the corresponding session 

of the stage.  

5 DISCUSSION 

According to the results of, from fig.2 to fig.5, the 

increase or decrease of the response of neuron A is a 

continuous insertion and deletion of the presynaptic ‘active 

transmitters; and the redistribution of the number of ‘active 

receptors’ of the receptor group RBA in the postsynaptic 

neuron B. Further this dynamic update to the number of 

presynaptic ‘active transmitters’ and the number of 

postsynaptic ‘active receptors’ in RBA was remained in very 

short time period, and subsequently presynaptic neuron A 

attained to the steady state. However in long-run we could 

see that although neuron A at high-firing frequency (i.e. at 

2Hz in stage-2) increased the number of ‘active transmitters’, 

it has not increased the average (mean) signal release 

probability at the steady state of the synaptic connection 

compared to when presynaptic neuron A fired at low-firing 

frequency( i.e. 0.5Hz in stage-3, see fig.6). In contrast, at the 

low-firing frequency of neuron A, even though the number 

of ‘active-transmitters’ in neuron A has decreased (compared 

to when A was at high-firing frequency), the average signal 

release probability of ‘active transmitters’ at the steady state 

has increased, see fig.6. Therefore, synaptic redistribution 

has improved the transmission for the first few signals in the 

signal train by dramatically increasing or decreasing the 

number of postsynaptic ‘active receptors’. In long-term at 

low-firing frequency synaptic redistribution has increased 

the steady state synaptic efficacy of the synaptic connection 

(i.e. increase of the signal release probability of ‘active-

transmitters’ in neuron A). Further, in our experiment the 

firing frequency of neuron A was always < 10 Hz. Therefore, 

according to Markram and Tsodyks [3] we were supposed to 

observe an increase in the efficacy at the synaptic 

connection between A and B at all the stages. But, we could 

observe an increase of the synaptic efficacy only at stage-3, 

i.e. when neuron A was in 0.5 Hz. Therefore the increase or 

decrease of synaptic efficacy at a steady state may not only 

base on rate of synaptic inputs but also on the phase of the 

synaptic input relative to the ongoing frequency oscillations 

of the network.   
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