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Abstract: In general, the inherent interaction among attributes must be considered circumspectly in the study of data 
mining and information fusion, a nonlinear model with nonlinear multi-regression model based on Choquet integral is 
suitable to deal with these problems. However, this nonlinear model is an over-determined systems and it is difficult to 
find the analytic solution. Hence, many researchers had proposed many algorithms; namely, genetic algorithm, neural 
network, particle swarm optimization, quantum-behaved particle swarm optimization (QPSO), to estimate parameters of 
this nonlinear model. In this study, an effective QPSO (EQPSO) algorithm which is used to estimate parameters of 
nonlinear multi-regression model was proposed. That is, the proposed EQPSO algorithm applied the concept of the 
genetic algorithm to the QPSO algorithm that can improve the convergent speed with premature phenomenon, 
stagnation and reducing the inference of the creative coefficient β in the QPSO algorithm. From the simulation results, 
the proposed EQPSO has the parameter estimation more precise and faster convergence speed than the genetic 
algorithm for the nonlinear multi-regression base on the Choquet integral. 
Keywords: Choquet integral, Nonlinear multi-regression, QPSO, Mutation, Stagnation. 

Ⅰ. Introduction 
In data mining and information fusion, the most 

common aggregation tools are the weighted average 
method and the linear regression. These methods are all 
linear and must assumption that there is no interaction 
among attributes. However, in many practical problems, 
the inherent interaction among attributes must be 
considered circumspectly. Hence, a nonlinear multi- 
regression based on Choquet integral (NMRCI) with 
respect to non-additive measures has been proposed 
[1,3,4,11,15]. Liu et al [15] proposed Choquet integral’s 
regression that derived from fuzzy support and deal with 
interaction among attributes based on the correlation in 
statistics. Wang et al [3-4] proposed a weighted NMRCI 
to deal with the data with some categorical attributes. It 
is more complex to estimate parameters of the nonlinear 
multi-regression. Hence, the non-weighted nonlinear 
multi-regression model [1] to deal with numerical 
attributes with the same dimension is adopted in this 
paper.  

At present, there are some soft computing 
techniques [2-4] which can be used for determining 
regression parameters of the NMRCI. In this study, the 
modify particle swarm optimization with quantum 
behavior (QPSO) is proposed for the NMRCI. The 
QPSO [5] ensures the congregation of the particle swarm 
without losing the randomness. Particles can appear any 
position of the whole space which is searched in a certain 
probability. Because of the swift convergence speed of 
QPSO, when one particle finds a local optima state, the 
others will quickly converge to it. If particles cannot find 
any better state, the QPSO will take on the premature 
phenomenon. In order to depart from the local optima, 
some improvements have been proposed [6-9]. These 

improved algorithms try to change the state of the 
particles by the mutation mechanism and to get out of the 
local optima. But it is difficult to be realized, when the 
explicit distances between the best and the local optima 
state is difficult to determine. In this paper, a QPSO 
algorithm with elitism of genetic algorithm (GA), named 
EQPSO is proposed. From the results of experiment 
show that the proposed algorithm can improve the 
convergent speed and the global searching ability. This 
paper is organized as follows. In section Ⅱ, the 
nonlinear multi-regression model base on Choquet 
integral is introduced. In section Ⅲ PSO and QPSO 
theory will be presented. In Section Ⅳ, The EQPSO 
algorithm will be introduced in detail. Simulation results 
and comparisons are described in Section Ⅴ and the 
paper is concluded in Section Ⅵ. 

Ⅱ. Nonlinear multi-regression model base on the 
Choquet integral 

Let the data consist of k recorders (or observations) 
of input { }1 2, ,

n
X x x x=  and output Y, denoted by 

1 2, , ,
j j jn j

f f f y  and has a form as: 

x1 x2 … xn y  
f11 f12 … f1n y1 

f21 f22 … f2n y2 

         
fk1 fk2 … fkn yk 

where k is the number of observation and should take 
much large than n at 5 times of 2n. Let X be a finite set of 
predictive attributes and Y be the objective attribute. In 
many real-world problems, the inherent interaction 
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among predictive attributes must be considered 
circumspectly and the kind of interaction is essentially 
different from the correlation in statistics. Hence, the 
traditional linear multi-regression model will fail in these 
practical applications. In order to effectively describe the 
inherent interaction among predictive attributes, Wang 
and Klir [10,11] proposed a non-additive set function μ
(named general measure) defined on the power set of 
predictive attributes X, i.e., : ( ) [0,1]P Xµ → , which 
satisfy the conditions ( ) 0µ φ = and ( ) 1Xµ = . When it 
deals with data mining and information fusion where 
data and information posses inherent interaction, it must 
adopt nonlinear integral with respect to the general 
measure. In general, the nonlinear integral has Sugeno 
integral, Wang integral, Choquet integral, etc [11]. The 
Choquet integral is the most frequent form and is defined 
as follows: 

 [ ]0

0
( ) ( ) ( )fd F X d F dα αµ µ µ α µ α

∞

−∞
= − +∫ ∫ ∫ , (1) 

where f is nonnegative function, and Fα is the α-cut set 
of function f. Because of X is finite, the Choquet integral 
can be express as: 

 
( ) { }* * * * *

1 1
1

( ) ( ) ( , , , )
n

i i i i n

i

fd f x f x x x xµ µ− +
=

= − ⋅∫ ∑  , (2) 

where { }* * *

1, , ,
i i n

x x x
+
  is a permutation of 

{ }1 2, , ,
n

x x x  and * * *
1 2( ) ( ) ( )

n
f x f x f x≤ ≤ ≤ , 

*
0( ) 0f x = . Thus, f defined on X and the relation between 

predictive attributes X and objective attribute Y can be 
express as a nonlinear multi-regression model as follows: 

 y c q fdµ ε= + ⋅ +∫ , (3) 

where c, q is a constant, fdµ∫  is the Choquet integral 
of function f with respect to general measureµ , and 

2(0, )Nε σ  is a normally distributed random 
perturbation with zero mean and variance σ2. In Eq. (3), 
the constant c, q andμare called regression parameters. 
These regression parameters can be determined by 
minimizing the squared error [11] 

 ( )1

22 k

j jj
y c q f de µ

=
− −=∑ ∫ . (4) 

However, it is an over-determined system and difficult to 
find an analytic solution of c, q, and μ. Hence, these 
parameters, c and q, can be estimated by the least square 
method. 

Ⅲ. Particle Swarm Optimization (PSO) and 
Quantum Behavior PSO (QPSO) 

From Eq. (3), to finds out a set of parameters 
satisfying the specific criteria is a heavy burden. Hence, 
a proper PSO algorithm can help to finish this work and 
it possesses an excellent ability of global search. In PSO, 
each particle keeps trajectory of its own position and 
velocity in the problem space. At the each iteration, the 
new positions and velocities of the particles are updated 

by the following two equations: 

 1 1 2 2( 1) ( ) ( ) ( )loc gol

i i i i i
v t v t c r p c r pϕ ϕ+ = + ⋅ − + ⋅ − , (5) 

 ( 1) ( ) ( 1)
i i i

t t v tϕ ϕ+ = + + ,  (6) 

where ,1 ,2 ,[ , ]
i i i i n

ϕ ϕ ϕ ϕ=   and ,1 ,2 ,[ , ]
i i i i n

v v v v=   are the 
position and the velocity of the ith particle in the 
n-dimensional search space, respectively. 

,1 ,2 ,[ , ]loc loc loc loc

i i i i n
p p p p=   and 1 2[ , ]gol gol gol gol

n
p p p p= 

 are 
the best position of the ith particle and global best 
position found so far. i=1,2,…M, M is the number of 
particle population, c1 is called cognitive parameter, c2 is 
called social parameter and r1, r2 are random numbers 
between [0,1]. Clerc and Kennedy [12] proved that if the 
upper bound of cj*rj is properly selected, the particle’s 
position 

i
ϕ  will converge to the center of potential field 

1 2[ , ]cnt cnt cnt cnt

n
pf pf pf pf=   (called equilibrium point), 

where cnt

i
pf , 1, 2 ,i n=   is the coordinate of cnt

pf in ith 
dimension, and is obtained by: 

 
( )

( )
1 2

1 2

( )
loc gol

icnt
r p r p

pf i
r r

⋅ + ⋅
=

+
, 1, 2, ,i M=  . (7) 

Each particle moves around and careens toward 
cnt

pf with declining its kinetic energy to zero, like a 
retuning satellite orbiting the earth. Inspired by analysis 
of convergence of the classical PSO [5], an individual 
particle can be seen as moving in a Delta Potential Well 
which center is equilibrium point cnt

pf in search space, 
and the quantum mode of a particle is depicted by state 
of energy (or, called wave function) ( , )x tΨ


 which 

follows the time-dependent Schrödinger equation:  

 2( , ) ( , ) ( ) ( , )2i x t x t V x x t
t m
Ψ = − ∇ Ψ + Ψ∂

∂
 

   
. (8) 

Sun et al [13] had showed the answer of Schrödinger 
equation for this model with time-independent in 
one-dimensional space as: 

 
1 ( ) ln(1 / )2

cnt

i
pf i uLϕ

+
= ± ⋅ , (9) 

where u is random number uniformly distribute on [0,1]. 
L is called "Creativity" or "Imagination" of particle. In 
order to avoid premature of the algorithm, Mainstream 
Thought Point is employed to evaluate parameter L. The 
Mainstream Thought Point or called Mean Best Position 
(mbest) and L are given as: 

 

,1 , 2 ,

1 1 1
, , ,

m m mi i i n

i i i

M M M
mbest

ϕ ϕ ϕ
= = =

=  
  
∑ ∑ ∑ , (10) 

 2
i

L mbestβ ϕ= ⋅ − , (11) 
where β is creative coefficient whose value will control 
the convergence speed of individual particle and the 
performance of the algorithm. 

Ⅳ. An Efficient QPSO Algorithm 

Huang et al [14] proposed an algorithm of 
improved QPSO (called IQPSO). Its basic concept is 

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 388



sharing the public information and variation by 
preserving the fore N elites at each generation. Though, 
this algorithm possesses some advances batter than the 
traditional PSO and QPSO and is more suitable for a 
complex nonlinear system, preventing premature, and 
improving the convergence speed, etc. But it still 
represents stagnating phenomenon in searching the 
global optimal solution, and is strongly influenced by the 
creative coefficientβand preserving number N. In order 
to improve this drawback, a modify algorithm EQPSO 
that combined the QPSO algorithm with the concept of 
GA to improve the IQPSO algorithm is proposed. In 
EQPSO, an index of stagnation (named matu) to monitor 
the convergence of particle’s state is set. If the best value 
of golp is not updated over then ten generations that 
means the procedure getting into local minimum. In 
order to depart from this situation as soon as possible, 
EQPSO adopts the similar policy of elitism. That is, this 
procedure preserves the golp and sorts these collected 
parameters in each iteration. Once matu, the index of 
stagnation, reaches a specified value, the new particle 
swarm of next generation will be replaced by these 
collected parameters. The proposed EQPSO algorithm is 
as follow: 
Step 1: Randomly initialize the particle swarm 

i
ϕ , 1, 2, ,i M=  and evaluate their fitness value. 

Step 2: Initialize loc

i
p with the best fitness value of 

th
i  

particle and golp with the best one of loc

i
p . 

Step 3: Calculate the Mean Best Position ( mbest ) by 
Eq. (10). 

Step 4: Calculate the center of potential field cnt
pf by 

Eq. (7). 
Step 5: Randomly select the Eq. (12) with equal 

probability to update
i

ϕ . 

 ( ) ln(1 / )( 1) ( ) ( )cnt

i i
ut pf i mbest tϕ β ϕ+ = ± ⋅ − ⋅ , (12) 

Step 6: Evaluate the fitness value of ( 1)
i

tϕ + . 

Step 7: By value calculated in step 6, sort ( 1)
i

tϕ + . 
Step 8: Check whether the maximum iteration is reached 

or the termination criteria is satisfied. If yes, then go 
to step 14. If no, carry on next step. 

Step 9: Check whether loc

i
p and golp should be updated. 

If golp is updated, then set matu = 0 and go back to 

step 3. If golp is not updated, then increase matu = 1 
and go on next step. 

Step 10: Check whether matu reaches 10 times M. If yes, 

let ( 1) golt pϕ + = and go back to step 3. If no, keep 
( 1)tϕ +  unchanged and go back to step 3. 

Step 11: Check whether loc

i
p and golp should be 

updated and output results. 

Ⅴ. Results and Comparisons 
The simulations were conducted in the Matlab 

environment with Intel Core 2 Duo CPU P8400 and 4GB 
Ram. It has been successfully run for a number of 
examples. 
Example 1: Let the regression parameters q=2.5, c=6, 
the dimension of predictive attribute is 4, 

{ }1 2 3 4, , ,X x x x x=  and data size is 50 show in Table 1. 
The EQPSO and the GA algorithm are independently 
used with stop criteria 3  1er e−≤  and 2  1.5er e−≤ , 
respectively. The average results are obtained as shown 
in Table 2. Besides, we also compare with PSO, QPSO, 
and IQPSO. In this example, the stop criteria 2  1er e−≤  
usually cannot be achieved in running GA algorithm [1]. 
Hence, the stop criteria is released as 2  1.5er e−≤  for 
running GA algorithm. From Table 2, the proposed 
algorithm is superior to the GA, PSO, QPSO and IQPSO 
for the parameters of estimation in the NMRCI. 

Ⅵ. Conclusions 

The NMRCI can describe the multi-input 
single-output systems or multi-input multi-output 
systems and has been widely developed under the 
non-additive measures. Many researchers had proposed 
some algorithms such as GA, neural network, PSO and 
QPSO to estimate parameters of the NMRCI. In the 
study, we successfully combine the mutation concept of 
GA into the QPSO algorithm. From the results of 
simulation, the proposed algorithm is superior to the GA, 
PSO, QPSO and IQPSO for the parameters of estimation 
in the NMRCI. 
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Table 1: Predictive and object attributes for Example 1. 
1( )f x  

2( )f x  
3( )f x  

4( )f x  y  
0.5 0.9 0.7 1.1 7.9750 
0.5 1.3 0.3 0.2 7.0250 
1.3 1.5 1.2 0.3 8.2375 
1.7 0.7 0.5 0.3 7.7250 
0.7 1.3 0.1 1.3 7.6750 
1.5 0.8 1.5 1 9.0125 
          

1.4 1 0.8 0.3 7.8750 
0.5 0.8 1.5 1.7 9.2250 
0.3 1.3 1.6 1 8.8250 
1.2 1.5 1.6 1.7 9.8500 
0.9 1 0.7 0.4 7.6500 

 
Table 2: The average results of example 1, where MSE is minimum mean square error, iters is iterations. 

 
calcµ  

GA 
calcµ  

PSO 
calcµ  

QPSO 
calcµ  

IQPSO 
calcµ  

EQPSO 
orgµ  

 

calcy  

GA 
calcy  

PSO 
calcy  

QPSO 
calcy  

IQPSO 
calcy  

EQPSO 
orgy  

{x1} 0.197 0.105 0.224 0.170 0.199 0.200 data(1) 7.963 8.030 8.023 8.028 7.975 7.975 
{x2} 0.103 0.036 0.065 0.083 0.099 0.100 data(2) 7.019 7.116 7.053 7.028 7.024 7.025 

{x1,x2} 0.338 0.353 0.394 0.322 0.350 0.350 data(3) 8.274 8.069 8.210 8.263 8.240 8.238 
{x3} 0.384 0.333 0.263 0.238 0.398 0.400 data(4) 7.716 7.620 7.843 7.672 7.725 7.725 

{x1,x3} 0.460 0.395 0.593 0.478 0.449 0.450 data(5) 7.657 7.777 7.650 7.759 7.676 7.675 
{x2,x3} 0.498 0.348 0.287 0.509 0.499 0.500 data(6) 9.025 9.030 9.207 9.035 9.012 9.013 

{x1,x2,x3} 0.617 0.474 0.576 0.611 0.601 0.600 data(7) 7.904 8.004 8.021 7.885 7.926 7.925 
{x4} 0.282 0.177 0.280 0.349 0.298 0.300               

{x1,x4} 0.458 0.459 0.419 0.378 0.449 0.450 data(44) 8.363 8.297 8.393 8.381 8.362 8.363 
{x2,x4} 0.340 0.323 0.306 0.352 0.350 0.350 data(45) 7.037 6.986 6.979 7.027 7.024 7.025 
{x3,x4} 0.602 0.577 0.589 0.634 0.600 0.600 data(46) 7.884 7.799 7.935 7.871 7.876 7.875 

{x1,x2,x4} 0.703 0.746 0.692 0.788 0.699 0.700 data(47) 9.235 9.235 9.248 9.398 9.224 9.225 
{x1,x3,x4} 0.893 0.990 0.951 0.887 0.900 0.900 data(48) 8.833 8.673 8.711 8.735 8.824 8.825 
{x2,x3,x4} 0.811 0.761 0.878 0.812 0.800 0.800 data(49) 9.864 9.764 9.864 9.867 9.851 9.850 

X 1.000 1.000 1.000 1.000 1.000 1.000 data(50) 7.653 7.724 7.700 7.671 7.651 7.650 
 Stop criteria q c MSE Elapse time (sec) 

GA 0.015 2.51626 5.98430 0.014801 28.062 
PSO 3000 iters 2.25588 6.33291 0.0957334 44.013 

QPSO 3000 iters 2.39674 6.12287 0.0959836 43.785 
IQPSO 3000 iters 2.43673 6.07210 0.0882585 86.308 
EQPSO 0.001 2.50015 6.00107 0.0009860 8.847 
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