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Abstract: An important issue in nonlinear science is parameter estimation for Lorenz chaotic system. Much attention 
has attracted increasing interests for the identification in various research fields, which could be essentially formulated 
as a multi-dimensional optimization problem. A novel evolutionary computation algorithm, nonlinear time-varying 
evolution particle swarm optimization (NTVEPSO) is employed to estimate the parameters. In the NTVEPSO method, 
the nonlinear time-varying evolution functions are determined by using matrix experiments with an orthogonal array, in 
which a minimal number of experiments would have an effect that approximates the full factorial experiments. The 
NTVEPSO method and other PSO methods are then applied to identify of Lorenz chaotic system. Numerical simulation 
and the comparisons demonstrate the feasibility and the superiority of the proposed NTVEPSO method. 
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I. INTRODUCTION 
Synchronization and control of chaotic systems have 

been investigated intensely in various fields during 
recent years[1–3]. Many of the proposed approaches only 
work under the assumption that the parameters of chaotic 
systems are known in advance. In real world, the 
parameters may be difficult to determine due to the 
complexity of chaotic systems. Therefore, parameter 
estimation for chaotic systems has become a hot topic in 
the past decade[4–9]. Recently, some evolutionary 
computation algorithms have been successfully applied 
to real world optimization problems. Several researchers 
have introduced the evolutionary-based methods into 
parameter estimation for chaotic systems[10–13]. 

Particle swarm optimization (PSO) has evolved 
recently as an important branch of stochastic techniques 
to explore the search space for optimization[14]. Nowadays, 
PSO has been developed to be real competitors with other 
well-established techniques for evolutionary-based 
optimization methods[15-17]. In this paper, parameter 
estimation for chaotic systems is formulated as a 
multi-dimensional optimization problem, and a nonlinear 
time-varying evolution PSO (NTVEPSO) approach is 
employed to solve the problem. Numerical simulation 
based on Lorenz system and comparisons with results 
obtained by several existed PSO methods verify the 
feasibility and the validity of the NTVEPSO approach. 

II. PROBLEM FORMULATION 
Considering the following n-dimensional chaotic 

system: 

0 0( , , )F=X X X Q   (1) 

where nR∈X denotes the state vector, 0X  denotes the 

initial state, and  is a set of original parameters. 0Q
When estimating the parameters, suppose the 

structure of the system is known in advance, and thus the 
estimated system can be described as follows: 

0
ˆ ( , , )F=X X X Q   (2) 

where ˆ nR∈X denotes the state vector, and  is a set 
of estimated parameters. Therefore, the problem of 
parameter estimation can be formulated as the following 
optimization problem: 

Q

Min 
1

21 ˆ
M

K K
K

J
M =

= −∑ X X  (3) 

where M denotes the length of data used for parameter 
estimation, KX  and ˆ ,KX   denote 
state vectors of the original and the estimated systems at 
time K, respectively.  

1, 2, , ,K = … M

Obviously, the parameter estimation for chaotic 
systems is a multi-dimensional continuous optimization 
problem, where the decision vector is  and the 
optimization goal is to minimize J. The principle of 
parameter estimation for chaotic systems in sense of 

Q
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optimization can be illustrated with Fig. 1. 
 

0X 1,..., MX X

1,..., MY Y

0 0( , , )F=X X X Q

0
ˆ ( , , )F=X X X Q

 
Fig. 1 The parameter estimation scheme for chaotic 
systems 

 
Due to the unstable dynamic behavior of chaotic 

systems, the parameters are not easy to obtain. In 
addition, there are often multiple variables in the 
problem and multiple local optima in the landscape of J, 
so traditional optimization methods are easy to trap in 
local optima and it is difficult to achieve the global 
optimal parameters. 

III. NONLINEAR TIME-VARYING 
EVOLUTION PSO APPROACH 

1. Review of some PSO methods 

Particle swarm optimization, first introduced by 
Kennedy and Eberhart[14], is based on observations of the 
social behavior of animals, such as bird flocking, fish 
schooling and the swarm theory. PSO is initialized with a 
population of random solutions. Each individual (called a 
particle) is assigned with a random velocity and evolves 
according to the flying experiences of its own and 
companions. The particles then fly through hyperspace 
and approach the global optimum. In PSO algorithm, 
each particle keeps track of its own position and velocity 
in the problem space. At each iteration, the new positions 
and velocities of the particles are updated using the 
following two equations: 

( 1) ( ) ( +1)i i iP k P k V k+ = +   for   (4) 1,  2, ,  i m=

1 1

2 2

( 1) ( ) ( ( ) ( )

( ( ))

l
i i i i

g
i

V k V k c r P k P k

c r P P k

+ = + ⋅ ⋅ −

+ ⋅ ⋅ −

)   (5) 

where  is the number of particles in a population,  
is the number of current iteration,  and  are 
acceleration coefficients,  and  are random 
numbers between 0 and 1, , , and  are 
the position, the local best, and the velocity of ith particle 
at iteration , 

m k
1c 2c

1r 2r
( )iP k ( )l

iP k ( )iV k

k gP  is the global best of all particles. 
Several researchers have put much effort to improve 

the original version of PSO since the introduction of the 
PSO method in 1995[14]. Shi and Eberhart[18] used a 
linearly varying inertia weight over iterations. The 
mathematical representations of this PSO method are 
given as shown in (4) and 

1 1

2 2

( 1) ( ) ( ) ( ( ) ( ))
( ( ))  for 1,  2, ,    

l
i i i i

g
i

V k k V k c r P k P k
c r P P k i m
ω+ = ⋅ + ⋅ ⋅ −

+ ⋅ ⋅ − =
    (6) 

where the acceleration coefficients  and  are fixed, 

 and  are two random numbers. The inertia weight 

starts with a high value 

1c 2c

1r 2r

maxω  and linearly decreases to 

minω  at the maximal number of iterations. From hereafter, 
this PSO algorithm will be referred to as the time-varying 
inertia weight factor method (TVIWPSO). 

Eberhart and Shi[19] found that the TVIWPSO method 
is not very effective in tracking dynamic systems. 
Considering the dynamic nature of real-world 
applications, they proposed a random inertia weight factor 
to track dynamic systems. In their method, the 
representations are the same as those in the TVIWPSO 
method except that the inertia weight factor changes 
randomly. In the rest of this paper, this algorithm will be 
referred to as the RANDWPSO method. 

An automation strategy for the PSO with time- 
varying acceleration coefficients was proposed[20]. The 
objective is to enhance the global search in the early part 
of the optimization and to encourage the particles to 
converge toward the global optimum at the end of the 
search. In their method, the representations are the same 
as those in the TVIWPSO method except that the 
acceleration coefficients change according to linear 
time-varying evolution. From hereafter, this algorithm 
will be referred to as the TVACPSO method. 

A time-varying nonlinear function modulated inertia 
weight adaptation was proposed by Chatterjee and 
Siarry[21]. In this method, the acceleration coefficients are 
also fixed. However, the inertia weight starts with a high 
value maxω  and nonlinearly decreases to minω  at the 
maximal number of iterations. This means that the 
representations are the same as those in the TVIWPSO 
method except that the inertia weight factor changes 
according to 

max
min max min

max

( ) ( )
iter iter

k
iter

α

ω ω ω ω
−

= + ⋅ −
⎛ ⎞
⎜ ⎟
⎝ ⎠

  (7) 

where  is the maximal number of iterations and 
 is the current number of iterations. 

maxiter
iter

2. PSO-NTVE method based on orthogonal arrays 

In this section, based on the concept presented[20,21], an 
NTVEPSO method is proposed. In the proposed PSO 
method, the inertia weight is given as described in (7). 
The cognitive parameter  starts with a high value 

and nonlinearly decreases to . Meanwhile, the 
social parameter  starts with a low value  and 
nonlinearly increases to . This means that the 
mathematical expressions are given as shown in (4), (7), 
and 

1c

1maxc 1minc

2c 2 minc

2 maxc

 
1 1

2 2

( 1) ( ) ( ) ( ) ( ( ) ( ))
( ) ( ( ))  for 1,  2, ,    

l
i i i i

g
i

V k k V k c k r P k P k
c k r P P k i m
ω+ = ⋅ + ⋅ ⋅ −

+ ⋅ ⋅ − =
 (8) 
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1 1min 1max 1min
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iter iter
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max
2 2 max 2min 2 max
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( ) ( )
iter iter

c k c c c
iter

γ
−

= + ⋅ −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (10) 

where ,α  ,β  and γ  are constant coefficients.  
The proposed PSO method will encourage particles to 

wander through the entire search space, instead of 
clustering around a local optimum, during early iterations 
of the optimization. On the other hand, the algorithm will 
expedite convergence toward the global optimum during 
latter iterations. In this manner, the optimal solution 
should be obtained in a computation-efficient way. 

To determine the optimal combination of ,α  ,β  and 
γ , all combinations must be tested. An  is an 
orthogonal array that can deal with at most six variables in 
five possible values with 25 experiments

6
25(5 )L

[22,23]. Instead of 
 possible combinations, one only needs to perform 25 

experiments to determine the optimal combination of 
35

,α  
,β  and .γ  

IV. SIMULATION RESULTS 
Lorenz system, a typical chaotic system[10–12], is 

adopted as an example in this paper. The mathematical 
description of Lorenz system is described as follows: 

1 2 1

2 1 1 3

3 1 2 3

( )x a x x
2x bx x x x

x x x cx

= −
= − −
= −

⎧⎪
⎨
⎪⎩

 (11) 

where 8 310, 28,a b c= = = are the original parameters. 
In our simulation, the original Lorenz system firstly 

evolves freely from a random initial state. Then 
successive M states ( ) of both the original 
system and the estimated system are used to calculate J. 
The searching ranges are set as follows: 

 and  In the Lorenz 
system (11), three-dimensional parameter are unknown 
and need to be estimated. 

300M =

9 11, 20 30,b≤ ≤a≤ ≤ 3.2 c≤ ≤

In the simulation for PSO methods, the population 
size and the maximal iteration number are chosen to be 40 
and 100, respectively. Moreover, the particles in PSO 
methods are all chosen as real numbers in the ranges of a, 
b, and c in (11). Several parameters in the PSO simulation 
must be specified first. In the employed PSO methods, the 

values of  and  in (7), 
(9), and (10) are set to 0.9, 0.2, 2.5, 0.5, 2.5, and 0.5, 
respectively. These values are determined based on 
Ratnaweera et al.

max ,ω min ,ω 1max ,c 1min ,c 2 max ,c 2 minc

[20]. In the orthogonal-array-based 
NTVEPSO, first, assume that ,α  ,β  and γ  in (7), (9), 
and (10) are all within the set  The 
values of 

{0.5, 1, 1.5, 2, 2.5}.
,α  ,β  and γ  are 0.5, 1.5, and 1.5 

determined by 25 experiments of orthogonal arrays. 
The statistical results obtained by PSO methods are 

shown in Table 1, in which each algorithm is 
implemented after 20 times independently. From the 
results, it is clear that the best, the average, and the worst 
results obtained by NTVEPSO are better than those 
obtained by the other PSO methods. 

V. CONCLUSION 
Parameter estimation for chaotic systems was 

formulated as a multi-dimensional optimization problem 
in this paper. A novel orthogonal-array-based 
evolutionary algorithm, NTVEPSO, was applied to solve 
such an issue. Numerical simulation and comparisons 
based on Lorenz system demonstrated the effectiveness 
and efficiency of NTVEPSO. The future work is to apply 
PSO for other chaotic systems and to develop more 
effective and adaptive PSO based approaches. 
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