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Abstract: In this paper, a hybrid optimization approach is proposed to design fuzzy PID controllers for asymptotical 
stabilization of a three-dimensional overhead crane. In the proposed method, a fuzzy PID controller is expressed in terms 
of fuzzy rules, in which the input variables are the error signals and their derivatives, while the output variables are the 
PID gains. In this manner, the PID gains are adaptive and the fuzzy PID controller has more flexibility and capability than 
the conventional ones with fixed gains. To tune the fuzzy PID controller simultaneously, a hybrid optimization procedure 
integrating genetic algorithm (GA) and particle swarm optimization (PSO) method is proposed. The simulation results 
illustrate that the proposed controller can effectively perform the asymptotical stability of the prototype overhead crane. 
 
Keywords: Three-dimensional overhead crane, particle swarm optimization, genetic algorithm, fuzzy PID control, hybrid 
optimization 

I. INTRODUCTION 

Overhead cranes are widely used in industry for 
transportation systems. However, the overhead cranes 
have several problems. Such that load swing usually de-
grades work efficiency and sometimes causes load dam-
ages and even safety accidents in the worst cases. 
Therefore, some researchers have endeavored to control 
the load swing [1-8]. However, the control of overhead 
cranes is not a simple task since the overhead cranes have 
fewer control inputs than degrees of freedom. Recently, 
many methods have been proposed for the design of 
controllers. Most industrial processes nowadays are still 
controlled by PID controllers [9-12]. However, a conven-
tional PID controller may have poor control performance 
for nonlinear and/or complex systems that have no precise 
mathematical models. The main disadvantage is that they 
usually lack in flexibility and capability. 

Fuzzy controllers provide reasonable and effective 
alternatives for conventional controllers. Many research-
ers attempted to combine conventional PID controllers 
with fuzzy logic [13,14]. Despite the significant improve-
ment of these fuzzy PID controllers over their classical 
counterparts, it should be noted that they still have dis-
advantages. Furthermore, for nonlinear multivariable 
systems, how to reduce the number of fuzzy rules is un-
solved. 

Several evolutionary algorithms have been proposed 
recently to search for optimal PID controllers. Among 
them, genetic algorithm (GA) has received great attention 

and particle swarm optimization (PSO) method has been 
successfully applied to various fields [15,16]. In this paper, a 
hybrid optimization approach integrating GA and PSO 
will be adopted to perform the fuzzy PID control. In this 
manner, the proposed method is fully capable of creating a 
fuzzy PID controller and eliminates the need for human 
expertise information in the design process. To show the 
flexibility and capability of the proposed method, an 
overhead crane is adopted as an illustrative example. 
From the simulation results, one can find that the designed 
fuzzy PID controller guarantees not only prompt damping 
of load swing but also accurate control of crane positions. 

II. FUZZY PID CONTROLLERS 

In the proposed fuzzy PID controller, the input vari-
ables of the fuzzy rules are the error signals and their de-
rivatives, while the output variables are the PID gains. 
The fuzzy PID control rules are expressed as 

If  is 1e 1
iX  and  is 1e 2

jX  and  is 2e 3
kX  and  is 2e 4

lX , 

then 1   1 1   1 2   , , , ijkl ijkl ijkl
2P P I I D DK Y K Y K Y= = =  

           for 11 ,i n≤ ≤  21 ,j n≤ ≤   31 ,k n≤ ≤ 41 l n≤ ≤   (1) 
where   and   are the error signals and their 
derivatives, 
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1 2 3 4, ,  ,i j k lX X X X

1 1, , , 
 are the membership func-

tions of    and 1,e 1,e 2 ,e 2 ,e 2KP I DK K  are the PID 
gains, 1  1  2, , ,ijkl ijkl ijkl

P IY Y Y D 1, are real numbers, n    
and  denote the numbers of input membership func-
tions, respectively. 
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The membership functions of an FLC are usually pa-
rametric functions such as triangular functions, trapezoi-
dal functions, Gaussian functions, and singletons. Though 
the proposed method is equally applicable to all these 
kinds of membership functions, asymmetric Gaussian 
ones are used as the antecedent fuzzy sets in this paper. 
This means that input membership functions are repre-
sented as 
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            for  
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1,  2, , 4,k =

1 1 2 2 3 3 4 41 , 1 , 1 , 1m n m n m n m n≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

where kx  represents the input linguistic variables, ,km

kρ  

,km

klσ  and km

krσ  denote the values of the centers, the left 
widths, and the right widths of the input membership 
functions, respectively. For the output membership func-
tions, singleton sets are adopted. In the defuzzification 
process, Wang [17] used the center of gravity method to 
determine the output crisp values. Then, if the PID control 
law is used and the control signal is determined as 

  
1 1 1 1 1 1

2 2 2 2 2 2

( ) ( )  ( ) ( )

+ ( )  ( ) ( )

P I D

P I D

u t K e t K e t dt K e t

K e t K e t dt K e t

= + +

+ +

∫
∫

    (3) 

From the above description, one can find that the gains 
of the fuzzy PID controller are adaptive such that the 
controller should have more flexibility and capability than 
the conventional ones. However, it is very difficult, if not 
impossible, to determine the parameters directly. There-
fore, a novel method integrating PSO and GA is proposed 
to search for the optimal values of these parameters si-
multaneously. 

III. A SIMULATION EXAMPLE  

1. Dynamic of An Overhead Crane 
In practice, load swing is suppressed as much as pos-

sible for safety considerations. This study considers this 
practical case of small load swing around the stable equi-
librium. Then, for the generalized coordinates ,x

Xθ ,y  
and ,Yθ in Fig. 1 the following linearized dynamic model 
[5] can be derived:  
  ( )X X X XM m x mL F D xθ+ + = −   (4) 

    (5) 0X Xx L gθ θ+ + =

  ( )Y Y Y YM m y mL F D yθ+ + = −   (6) 

    (7) 0Y Yy L gθ θ+ + =

( , , )m m mx y z

Xθ
Yθ

XF

YF

ty

tx
( , , )x y z

  
Fig. 1. Coordinate systems of an overhead crane. 

 
where  is the load mass; L is the rope length; m

XM and YM are the x and y components of the crane mass 
including the moment of inertia of the gear train and 
motors, respectively;  and  denote the viscous 
damping coefficients of the crane in the x and y directions, 
respectively; 

XD YD

XF  and YF  are the force inputs to the crane 
in the x and y directions, respectively; g denotes the 
gravitational acceleration.  

2. GA-PSO tuning Fuzzy PID Controller 
In the overhead crane, the desired value of ( )x t  and 

( )tθ  are denoted by dx  and dθ . If the PID control law is 
employed, then the input-output relation of the crane  
system is expressed as 

   (8) 
1 1 1 1 1 1

2 2 2 2 2 2
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where 1 ( ) ( ) ,de t x t x= − 2 ( ) ( ) ,de t tθ θ= −  

       and 1 ( ) ( ) ,de t x t x= − 2 ( ) ( ) .de t tθ θ= −   

3. Fitness  
In designing the fuzzy PID controller, the primary 

goal is to drive an overhead crane system from the given 
initial state to the desired final state. However, if the 
number of fuzzy rules is large, then heavy computation 
burden and huge memory requirement are inevitable. 
Therefore, the primary goal and the way to reduce the 
number of fuzzy rules should be taken into account si-
multaneously in defining the fitness function. This means 
that two performance criteria are chosen as follows: 
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where  ,ip ,jp   and  are the binary elements to 

indicate which ones of the membership functions are ac-

,kp ,lp
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tivated. From the definition (9), the fitness value can be 
calculated to evaluate the performance of the fuzzy PID 
controller and a higher fitness value denotes a better per-
formance. 

IV. INTEGRATION OF PSO AND GA 

PSO is a population-based stochastic searching tech-
nique developed by Kennedy and Eberhart [18]. It is similar 
to the GA in that it begins with a random population ma-
trix and searches for the optima by updating generations. 

1. Particle Representations 
Before applying the novel auto-tuning method, how to 

encode the parameters must be introduced firstly. In the 
proposed method, a mixed coding method is used, in 
which    and  are encoded as binary num-

bers and 
1 ,n 2 ,n 3 ,n 4n

,km

kρ  ,km

klσ  ,km

krσ        1 ,ijkl

PY  1 ,ijkl

IY  1 ,ijkl

DY 2 ,ijkl

PY  2 ,ijkl

IY

 2

ijkl

DY  are encoded as real numbers. This means that the 
positions of particles are represented as 
    (10)  [ ]binary real=P p p

The particle  contains binary variables taking 

the value of one or zero. The elements of  are used 
to indicate which ones of the membership functions are 
activated. As for the real particles , the elements of 

 are used to represent the values of 

binaryp

binaryp

realp

realp ,km

kρ  ,km

klσ  ,km

krσ  

     and  1 ,ijkl

PY  1 ,ijkl

IY  1 ,ijkl

DY  2 ,ijkl

PY  2 ,ijkl

IY  2

ijkl

DY . 

2. Evolutionary Algorithms 
In evolutionary strategies, the real particles  will 

employ the PSO method. As for binary particles , it 
will adopt the GA because of their nature and simplicity. 
In PSO method, the particles update their velocities and 
positions based on the local best and global best solutions 

realp

binaryp

[19]. In the evolutionary procedure, the inertia weight, the 
cognitive parameter, and the social parameter are linearly 
adaptable over the evolutionary procedure [19]. In the 
proposed GA-based method for binary particles, one 
cut-point crossover operator and single-point mutation 
operator will be employed [20]. 

V. SIMULATION RESULTS 

The parameters of the overhead crane system shown 
as Fig. 1 are chosen as [2]

1440 , 480 /X XM kg D N s m= = ⋅  

110 , 40 /Y YM kg D N s m= = ⋅  
210 , 1 , 9.8 /m kg L m g m= = = s  

and  the constraints  shown as 
 ,  4800 N 4800 NXF− ≤ ≤ 200 N 200 NYF− ≤ ≤

/12 rad/s /12 rad/sπ θ π− ≤ ≤

/ 6 rad/s / 6 rad/sπ θ π− ≤ ≤  

0 5.5 ,   0 3.m x m m y m5≤ ≤ ≤ ≤  

0.5 / 0.5 /m s x m s− ≤ ≤ , 2 22 2m s x m s− ≤ ≤  

0.3 / 0.3 /m s y m s− ≤ ≤ , 2 21.5 1.5m s y m s− ≤ ≤  
The initial state and the desired final state of the over-

head crane are ( , , ) (1, 1, /18)x y θ π=  
and ( , , ) (0, 0, 0)x y θ = . In the proposed algorithm, the 
population size, the maximal iteration number, the 
crossover rate, and mutation rate are chosen to be 40, 
2000, 0.8, and 0.2, respectively. Moreover, it is assumed 
that the values of    and  are all chosen as 
five, and the singletons of the output linguistic variables 
are all chosen as real numbers. According to the proce-
dure of the GA-PSO algorithm, the minimal fuzzy rules 
and the optimal membership functions of the input lin-
guistic variables are determined. Moreover, the optimal 
values of  and  can be determined. The former 
is found to be [00101010010101010010] and it means 
that only the membership functions 

1 ,n 2 ,n 3 ,n 4n

binaryp realp

3

1 ,X 5

1 ,X 2

2 ,X 5

2 ,X  
2

3 ,X  4

3 ,X 1

4 ,X  and 4

4X  are activated. Meanwhile, this 
also means that there are 16 ( ) fuzzy rules 
in the fuzzy PID controller. Since the number of fuzzy 
rules is reduced from 625 ( ) to 16, the computation 
burden in implementation of this fuzzy PID controller will 
also be reduced significantly. 

2 2 2 2= × × ×

45=

The simulation results shown as Fig. 2 through Fig. 5 
illustrate that the proposed fuzzy PID controller can ef-
fectively complete the asymptotical stability of the pro-
totype overhead crane. 

VI. CONCLUSION 

In fuzzy PID tuning techniques, the parameters of 
fuzzy sets and PID gains are difficult to obtain the optimal 
values for stabilizing an overhead crane. In this paper, we 
present a hybrid optimization approach integrating GA 
and PSO to design a fuzzy PID controller to asymptoti-
cally stabilize the prototype overhead crane. 
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Fig. 2. Plot of x-position ( )x t for the overhead crane 
using the proposed fuzzy PID controller. 

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Time (sec)
y 

 p
os

iti
on

 (m
)

 
Fig. 3. Plot of y-position for the overhead crane 
using the proposed fuzzy PID controller. 
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Fig. 4. Plot of X-angle of the overhead crane 
using the proposed fuzzy PID controller.  
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Fig. 5. Plot of Y-angle of the overhead crane 
using the proposed fuzzy PID controller.  
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