
Production Scheduling Based on Mixed-Integer Evolutionary Algorithm

Yung-Chin Lina,b, Yung-Chien Lina, Kuo-Lan Sub

aDepartment of Electrical Engineering, WuFeng Institute of Technology, Chiayi, Taiwan
bDepartment of Electrical Engineering, National Yunlin University of Science & Technology, Yunlin, Taiwan

e-mail: {yclin@mail.wfc.edu.tw; chien-lin@mail.wfc.edu.tw; sukl@yuntech.edu.tw}

Abstract: Production scheduling is one of the most important decision-making problems in the manufacturing industry.
The problem is complex due to coupling with combinatorial property and constrained requirements. To describe
production scheduling, a mixed-integer nonlinear programming (MINLP) model is developed to formulate this
decision-making problem. On the other hand, in order to effectively make an optimal decision, a mixed-integer
evolutionary algorithm is proposed to solve this MINLP problem. Finally, an experimental example is used to test the
algorithm. The experimental results demonstrate the proposed algorithm can effectively handle the production
scheduling problem.

Keywords: production scheduling, mixed-integer nonlinear programming, evolutionary algorithm.

I. Introduction

In a batch manufacturing system, production
scheduling is one of the most important decision-
making problems. In such a manufacturing system,
batch operations (e.g. batch drying, batch distillation,
batch reactors, etc.) are often used to produce multiple
products that are similar in nature. When products are
similar in nature, they need identical processing steps
and the same series of processing units. Therefore, in
order to maximize productivity in the shortest possible
time, the optimal process scheduling is crucial in such
a sequential processing decision problem.

Due to the coupling with combinatorial property
and conflict constraints, this decision-making
problems is complex and difficult to solve. In order to
describe this decision-making problem, we develop a
mixed-integer nonlinear programming (MINLP)
model, based on Karimi's models [1], to formulate this
production scheduling problem. In the MINLP model,
continuous variables are used to describe the
interactive relationships (e.g. mass balances, energy
balances, physical phenomena, etc.), and integer
variables are used to represent the existence of
processes and the operational status of the processing
units. Owing to the combinatorial property of
production-strategy selection together with conflict
constraints, the MINLP model presents complex
characteristics such as multimodality, large
dimensionality, strong nonlinearity, nonconvexity, and
nondifferentiability. As a result, it is difficult to find
the globally optimal solution.

Evolutionary algorithms (EAs) [2], [3] are defined
as a class of stochastic search and optimization methods
that begin a population of randomly generated solutions
and evolve towards an optimal solution by repeatedly
applying a set of genetic operations. Due to their ability
to escape from the local optimal solutions, EAs have
been demonstrated a promising candidate for solving
complex optimization problems, including the

constrained optimization problems. For optimization
problems with complicated constraints, Michalewicz
and Schoenauer [4] surveyed and compared several
constraint-handling techniques used in EAs. Of these
techniques, the penalty function method is one of the
most popularly used techniques to handle the constraints.
In this method, the fitness function including a penalty
function, i.e. the squared or absolute constraint violation
term, is used to reject infeasible solutions. However,
these penalty function methods have a fatal weakness
when the penalty parameters are large. For example, if
the penalty parameters are large, the penalty function
tends to be ill-conditioned near the boundary of feasible
domain. Thus it may lead to a local solution or an
infeasible solution. In this paper, to effectively solve
mixed-integer constrained optimization problems (or
MINLP problems), a mixed-integer evolutionary
algorithm based on Lagrange method is developed for
solving the MINLP problems as production scheduling
problems.

In this paper, we not only formulate two MINLP
models to describe the production scheduling problems,
but also propose a mixed-integer evolutionary algorithm
to handle them. The proposed algorithm has been
successfully applied to a number of mixed-integer
optimization problems [5], [6]. Finally, a production
scheduling problem presented by Karimi [1] is
employed to test the performance of the proposed
method. The computational results demonstrate that the
proposed method performs much better than the penalty
method.

II. MINLP Formulation for Production

Scheduling

Karimi [1] proposed a mixed-integer linear
programming (MILP) model to formulate the
production scheduling problem. In the following, we
will describe this problem for details, and then propose
a complete and explicit MINLP model to handle the
production scheduling problem.

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 306

In this paper, we investigate a problem of scheduling
N products across an M-stage serial processing plant
with a single unit per stage. The configuration of this
multiproduct batch plant is shown in Figure 1. In this
batch plant, no storage (buffer) is available between the
processing units. Therefore, if a product finishes
processing on a unit and the downstream unit is not free
(i.e. still processing a previous product), then the
completed product must be held in the unit until the
downstream unit becomes free. In this multiproduct
plant, all products pass through the series of M units and
the processing conditions are known a priori for all the
products (i.e., the processing time tkj

of the product

kP on unit j is specified). Based on these specified
processing conditions, the objective of the scheduling
problem is to obtain the order in which the batches
should be produced so as to maximize the productivity
of the process, i.e., to minimize the makespan (the total
time required to produce all the batches).

Fig.1. Configuration of batch plants.

Firstly, let Cij
denote the time at which the ith

product in the production sequence leaves unit j. Hence,
CNM

is the makespan of the given product sequence. To
compute Cij

, consider the time-space relation of
neighborhood stages and successive products. The
completion time of the ith product in the sequence on
unit j is simply the time at which unit j starts processing
the ith product plus its processing time pij

. But unit j

cannot start processing the ith product until it has
processed the previously (i-1)th product, or until the ith
product has been processed by the upstream unit (j-1),
as shown in Figure 2. We therefore have the following
recurrence relations except for unit 1:

     ijjijiij pCCC   11 ,max (1)
MjNi ,,2;,,1for  

For unit 1, the completion times for each product can be
obtained as follows:

     NipCCC iiii ,,1for,,max 122111  
(2)

Note that Cij  0 for i 0 or j 0 .
To order the production sequence of products, a set

of binary variables are introduced as follows:











otherwise,0
sequenceproductionin the

positionatisPproductif,1 i

Y

k

ki

(3)

for NiNk ,,1;,,1  

For example, Y32 1 means that product P3 is the
second in the production sequence, and Y32 0 means
that it is not in the second position. Based on the

significance of Yki
, we obtain the following two sets of

equality constraints.

Figure 2. The time-space relation of Cij
, Ci j()1

and

C i j()1
.

The first set of constraints ensures that a product is
assigned to one and only one position in the processing
sequence:

Y k Nki
i

N

 


 1 1
1

, , (4)

The second set of constraints ensures that a position
in the sequence is assigned to one and only one product:

Y i Nki
k

N

 


 1 1
1

, , , (5)

Let tkj
denote the processing time for product

Pk
on unit j. Now we must utilize a given set of Yki

and
tkj

to determine the processing time pij
of the ith

product in the production sequence on unit j. If product
Pk

in the sequence position i, then pij
must be tkj

. On
the other hand, we know that if product Pk

in the
sequence position i, then Yki  1 and Y Yk k1 2 

     Y Y Yk i k i kN() ()1 1 0 . Therefore, the processing
time pij

can be represented as:

2211 NjNijijiij tYtYtYp  

MjNi ,,1;,,1for   (6)
Replacing (1) and (2) by (6), so we have:

    ,max
1

11 


 
N

k
kjkijijiij tYCCC

MjNi ,,2;,,1for   (7)

     NitYCCC
N

k
kkiiii ,,1for,max

1
122111  




(8)

Since the criterion is to minimize the makespan,
the scheduling problem can be formulated as a MINLP
problem as follows:

NMCmin (9)
subject to Eqs. (4), (5), (7) and (8)

P1
P2

PN

P1
P2

PN

unit 1 unit 2 unit M

unit j-1

unit j

unit j-1

unit j

ii-1
Ci(j-1)

C(i-1)j

Cij

i-1 i

i-1 i

i-1 i

C(i-1)j

Ci(j-1)

Cij

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 307

III. Mixed-Integer Evolutionary Algorithm

Let us consider a mixed-integer nonlinear
constrained optimization problem as follows:

)(min yx,
yx,

f (10)

subject to
ej mjh ,...,1,0)(yx, (11)

ij mjg ,...,1,0)(yx, (12)
where x represents an nC-dimensional vector of
continuous variables, y is a nI-dimensional vector of
integer variables, and)(yx,jh and)(yx,jg stand
for the equality and inequality constraints. To
abbreviate these expressions, a compact notation

)(yx,z  is used in the following discussions, and the
problem is referred to as primal problem.

The Lagrange function corresponding to the
primal problem is defined by





ie m

k
kk

m

k
kk ghfL

11

)()()()(zzz,z,  (13)

where
k and

k are the Lagrange multipliers. The
exterior penalty term can be used to define the new
objective function, termed the augmented Lagrange
function, as

   


em

k
kkkka hfL

1

22)()()( zz,z,

 





im

k
kkkk g

1

22)( z (14)

where
k and

k are positive penalty parameters,
the bracket operation is denoted as  0,max gg 


,

and the corresponding Lagrange multipliers
),...,(1 em and 0),...,(1 im are defined

as
kkk  2 and

kkk  2 .

In nonlinear programming, the Kuhn-Tucker
optimality conditions are used to solve constrained
optimization problems. The Kuhn-Tucker optimality
conditions are suitable only for differentiable and
convex problems. Unfortunately, the mixed-integer
constrained optimization problems are just non-
differentiable. However, the saddle point theorem [7]
can provide sufficient conditions for solving
constrained optimization problems without any
differentiability or convexity requirements. It states
that, if a point is a saddle point of the augmented
Lagrange function associated with the primal problem,
then the point is the solution of the primal problem.
Accordingly, in this paper the saddle point theorem is
used to solve mixed-integer constrained optimization
problems.

The saddle point can be obtained by minimizing
)(**  ,z,aL with the optimal Lagrange multipliers

)(**  , as a fixed parameter vector. However, the
difficulty of this minimization is that it requires the

knowledge of)(**  , previously. In general, the
optimal values of Lagrange multipliers are unknown a
priori. The duality theorem [7] can be employed to
overcome this difficulty.

According to the duality theorem, we can
construct an evolutionary max-min algorithm to solve
mixed-integer constrained optimization problems. The
evolutionary min-max algorithm (MIHDE-AMM)
includes two phases as stated in Table 1. In the first
phase (step 2 in Table 1), a mixed-integer evolutionary
algorithm, called MIHDE [6], is used to minimize the
augmented Lagrange function with multipliers fixed.
In the second phase (step 3 in Table 1), the Lagrange
multipliers are updated to ascend the value of the dual
function toward obtaining maximization of the dual
problem.

Table 1. Evolutionary max-min algorithm for mixed-
integer constrained optimization problems.

Step 1. Set initial iteration: 0l . Set initial multipliers:
0l

k for
emk ,...,1 , 0l

k for

imk ,...,1 . Set penalty parameters: 0k
for

emk ,...,1 , 0k for
imk ,...,1 .

Step 2. Use MIHDE to solve)(ll
aL υ,νz, . Let

b
lll

b)(y,xz  be a minimum solution to the

function)(ll
aL υ,νz, .

Step 3. Update the multipliers as follows:
l
k

l
bk

l
k h  )(1 z



  l
k

l
bk

l
k g )(1 z

Step 4. Update
k and

k , if necessary.

Step 5. If the maximum iteration is reached, stop.
Otherwise, let 1 ll and repeat Steps 2 to 4.

As far as the evolutionary computation is concerned,
the evolutionary max-min procedure may increase many
function evaluations and affect the convergence rate.
However, in order to find the exact solution, it is
necessary and inevitable unless using other special
approaches, e.g., sequential quadratic programming
(SQP) [8], to continuously update the Lagrange
multipliers. Unfortunately, SQP is not applicable for the
non-differentiable mixed-integer constrained
optimization problems. The update of the Lagrange
multipliers is based on the exact or approximate
minimum of the augmented Lagrange function with
multipliers fixed. As presented by Arora et al. [8], an
exact or approximate minimum is necessary in order to
ensure proper shift of the Lagrange function towards the
required solution. With a rough minimum, the shift of
the Lagrange function may be far away from the
required solution leading to obtain a nonexistent dual
function so that the duality theorem shall be disobeyed.

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 308

IV. Experimental Example

An example in Karimi [1] is given here to test the
performance of the MIHDE-AMM algorithm. The
MIHDE with penalty function method (MIHDE-PFM)
is used to be compared.

In this example, we consider a three-unit, four-
product production scheduling problem. Therefore, the
MINLP problem with 8 equality constraints includes
one real variable and 16 integer variables. Table 2
shows the data of processing times as discussed in
Karimi [1]. Karimi obtained the minimum makespan of
34.8 hrs. In this example, we use the minimum value as
a stopping criterion to check how much iteration for
MIHDE-AMM reaching to this global solution. The
product sequence of 1-3-4-2 with a makespan of 34.8
hrs, and the optimal completion times are shown in
Figure 3.

Table 2. Processing times (h) of products.
unitsProducts

1 2 3
1 3.5 4.3 8.7
2 4.0 5.5 3.5
3 3.5 7.5 6.0
4 12.0 3.5 8.0

unit 1

unit 2

unit 3

Holding Time

4 2

3.5 19.8 23.8

7.8 15.3

7

23.3 29.3

16.5 22.5 31.3 34.8

31

Figure 3. Optimal completion times for four products.

For comparison, The penalty function method
(MIHDE-PFM) is also applied to solve the production
scheduling problem. Table 3 shows that the
computational results for MIHDE-AMM and MIHDE-
PFM with penalty parameters of 1, 103 and 106. For
penalty parameters of 103 and 106, both two algorithms
can find the same optimal solution. However, the
feasible solution are not obtained by MIHDE-PFM with
penalty parameters of 1 because some inequality
constraints are violated. Conversely, the MIHDE-AMM
can obtain the same optimal solution using the penalty
parameters of 1. This result demonstrates that the
MIHDE-AMM outperforms the MIHDE-PFM.

IV. Conclusions

In this paper, a mixed-integer nonlinear
programming (MINLP) model is developed to
formulate the production scheduling problem. In order
to effectively find the optimal solution, a mixed-integer
evolutionary algorithm is proposed to solve this MINLP

problem. From computational results, we can find that
better results are obtained in comparison with the
penalty function method. This demonstrates that the
algorithm can effectively handle the decision-making
problem of production scheduling.

Table 3 . Comparison of the MIHDE-AMM and
MIHDE-PFM for various penalty parameters, k

,
k  1 8, , .

MIHDE-AMM MIHDE-PFM
Item k  1 k  103 k  106 k  1 k  103 k  106

zf 34.8 34.8 34.8 8.0† 34.8 34.8
z1h 0.0 0.0 0.0 -1.0‡ 0.0 0.0
z2h 0.0 0.0 0.0 -1.0‡ 0.0 0.0
z3h 0.0 0.0 0.0 -1.0‡ 0.0 0.0

z4h 0.0 0.0 0.0 -1.0‡ 0.0 0.0
z5h 0.0 0.0 0.0 -1.0‡ 0.0 0.0
z6h 0.0 0.0 0.0 -1.0‡ 0.0 0.0
z7h 0.0 0.0 0.0 -1.0‡ 0.0 0.0
z8h 0.0 0.0 0.0 -1.0‡ 0.0 0.0

TFC 21905 663 663 NTR 663 663
NTR: The global solution is not to reach.
†: The solution is infeasible.
‡: The constraint is violated.

References

[1] I. A. Karimi, “Multiproduct Batch Plant Scheduling
in CACHE,” Chemical Engineering Optimization
Models with GAMS, vol. 6

[2] Z. Michalewicz, “Genetic Algorithm + Data Structure
= EvolutionPrograms,” Springer-Verlag, 1994.

[3] T. Back, D. Fogel, and Z. Michalewicz, Handbook of
Evolutionary Computation. New York: Oxford Univ.
Press, 1997.

[4] Z. Michalewicz, Z. and M. Schoenauer,
“Evolutionary Algorithms for Constrained Parameter
Optimization Problems,” Evolutionary Computation,
vol. 4, no. 1, pp. 1-32, 1996.

[5] Y. C. Lin, K. S. Hwang, and F. S. Wang, “An
evolutionary Lagrange method for mixed-integer
constrained optimization problems,” Engineering
Optimization, vol. 35, no. 3, pp. 267-284, 2003.

[6] Y. C. Lin, K. S. Hwang, and F. S. Wang, “A mixed-
coding scheme of evolutionary algorithms to solve
mixed-integer nonlinear programming problems,”
Computers & Mathematics with applications, vol. 47,
pp. 1295-1307, 2004.

[7] D.A. Wismer and R. Chattergy, Introduction to
Nonlinear Optimization. Elsevier North-Holland,
1978.

[8] J. S. Arora, A. I. Chahande, and J. K. Paeng,
“Multiplier methods for engineering optimization,”
Int. J. Numerical Methods in Engineering, vol. 32, pp.
1485-1525, 1991.

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 309

