
Particle Swarm Optimization with Genetic Recombination
- A Hybrid Evolutionary Algorithm

Sam Chau Duong, Hiroshi Kinjo, Eiho Uezato Tetsuhiko Yamamoto
Faculty of Engineering, University of the Ryukyus Tokushima Technology College
Senbaru 1, Nishihara, Okinawa 903-0213, Japan Itano-gun, Tokushima 779-0108, Japan

Abstract

This article presents a hybrid evolutionary algorithm
(HEA) based on particle swarm optimization (PSO) and
real-coded genetic algorithm (GA). In the HEA, PSO is
used to update the solution and a genetic recombina-
tion operator is added to produce offspring individuals
based on the parents that are selected in proportion to
their relative fitness. Through the recombination, new
offspring enter the population and the individuals with
poor fitness are eliminated. The performance of the pro-
posed hybrid algorithm is compared to those of the orig-
inal PSO and GA and the impact of the recombination
probability to the performance of the HEA is also ana-
lyzed. Various simulations of multivariable functions and
neural network optimizations are carried out, showing
that the proposed approach is superior over the canoni-
cal means.

Keywords: Hybrid evolutionary algorithm, Parti-
cle swam optimization, Genetic algorithm, Multivariable
optimization, Neural network.

1 Introduction

Evolutionary algorithms have been emerged in the
growing study and applied pervasively in various areas.
Although their competence have been proved to be su-
perior over the conventional methods, an experienced
combination of operations (either full or partial) from
different approaches may provide a more efficient per-
formance. In fact, the hybridizations of evolutionary al-
gorithms have been the focus of much research recently
and they are considered as effective general-purpose tools
for the goals of exploration and exploitation [1]. The hy-
brids of genetic algorithms (GAs) and particle swarm op-
timization (PSO) have become a popular and interesting
framework with capability of handling several real world
problems.

In general, evolutionary algorithms involve strong
stochastic basic, they therefore require many generations
to obtain good solution. In this article, a hybrid of PSO
an real-coded GA is proposed, called the hybrid evolu-

tionary algorithm (HEA). With the focus on the inves-
tigation of how quick an algorithm can find a solution,
comparison between the proposed HEA and the canon-
ical PSO and GA is carried out with small population
size and generation.

The rest of this article is organized as follows. Sec-
tion 2 is a background on the PSO and real-coded GA
used in this study. In Section 3, the proposed hybrid
algorithm is introduced. Simulations will be shown
in Section 4, where the performance of the proposed
method is investigated and compared to those of the
canonical PSO and real-coded GA. The optimization
problems of multivariable function are first considered.
The neural network optimization for the exclusive-or
(XOR) problem is then examined. Lastly, Section 5 is
the discussion and conclusion of the study.

2 Brief Background on Particle Swarm
Optimization and Genetic Algorithm

2.1 Particle Swarm Optimization

As one of the latest evolutionary optimization meth-
ods, PSO is a population-based stochastic approach
which provides efficient performance with simple opera-
tors [2],[3].

Assume that the search space is D-dimensional, the
n-th particle (solution) of the swarm is represented by
a D-dimensional vector Xn = [xn1, xn2, · · · , xnD]T. The
n-th particle’s velocity is also a D-dimensional vector,
denoted as Vn = [vn1, vn2, · · · , vnD]T. The best position
of the n-th particle is PBn = [pbn1, pbn2, · · · , pbnD]T (the
local best, the smallest objective value that the n-th par-
ticle has obtained so far), and the best position of the
swarm is denoted as gb (the global best, the smallest ob-
jective value achieved by any particle in the population).
After finding the two best values in the k-th iteration,
the particle updates its velocity and position in the next
iteration (k + 1) with following equations:

vk+1
nd = λvk

nd+c1r1

(
pbk

nd − xk
nd

)
+c2r2

(
gbk

d − xk
nd

)
(1)

xk+1
nd = xk

nd + vk+1
nd (2)

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 452



αI I

x2x1

αI

Figure 1: The BLX-α crossover

where d = 1, 2, · · · , D; n = 1, 2, · · · , N (N is the swarm
population size); k = 1, 2, · · · ,K is the iteration (or gen-
eration) number; λ is the inertia weight; c1 and c2 are
positive constants (in this study c1 = c2, which is usually
used); r1 and r2 are random values in the range [0, 1].

2.2 Genetic Algorithms

Genetic Algorithms (GAs) are adaptive heuristic
search techniques based on the ideas of natural selec-
tion and genetics. Generally, the main driving operators
of GAs are selection, recombination via crossover, and
mutation.

In this study, the recombination of a real-coded GA
is used where offspring are produced by the so-called
blend crossover (BLX-α) [4]. The BLX-α generates
offspring by picking values on an interval that contains
two parents and may extend equally on either side of
the interval with a range determined based on a range
parameter α (see Fig. 1).

3 A Hybrid of Particle Swarm Optimiza-
tion and Genetic Algorithm

In this paper, a hybrid of PSO and GA is proposed,
where the BLX-α crossover is used to produce offspring
(M individuals). The operation of the proposed hybrid
evolutionary algorithm (HEA) is shown in Fig. 2. In the
figure, (.)b presents the local best value of an individual
in PSO and x′

n is the new position of the individual
(the updated position by Eqs. (1) and (2)). After being
produced by the BLX-α recombination and being eval-
uated, the offspring xn+m sets itself to be its local best
value. A ranking procedure based on the fitness of each
individual is performed for the pool of all parents and
offspring, from which the individuals with poor fitness
are eliminated to maintain a constant population. The
individual with highest fitness is set to be the global best
of the swarm.

The recombination with selection is the main differ-
ence of the HEA, GA compared to PSO. Suppose that
the probability of offspring production is µ, the GA and
the proposed HEA shall produce M = µ × N offspring
and also eliminate the same amount (the inferiors) to
keep a constant population size of N at each generation.
As a result, the number of individuals that is taken into
the evaluation at each generation is (1 + µ)×N .

x1

.

.

.

x2

xN

xN+1

.

.

.

xN+2

xN+M

x2

.

.

.

x5’

xN+6

Offspring production PSO Survival

xb1

xb2

xbN

x1’

.

.

.

x2’

xN’

xN+1

.

.

.

xN+2

xN+M

xb1’

xb2’

xbN’

PSO

Copy

Sorting

x2

.

.

.

x5’

xN+6

.

.

.

xN’

x3’

x2

xb5’

xN+6

Eliminated

xb5’

x2

xN+6

xbN’

xb3’

xN+8xN+8

Figure 2: Process of the proposed hybrid algorithm

In the GA recombination, the Roulette wheel tech-
nique is used to select parents for reproduction in pro-
portion to their relative fitness, which is defined as:

Fitness =
1

1 + E
(3)

where E is the error between the obtained cost function
value and the optimal cost function value (the optimal
solution of the problem).

4 Numerical Simulations

4.1 Multivariable Function Optimization

4.1.1 Parameter and test design
In general, a high recombination probability results in a
severe selection of several solutions and thus usually pro-
vides good performance of a competitive-selection based
EA. Thus, in order to make a fair comparison with the
PSO as well as to demonstrate the advantage of the pro-
posed method, a small recombination probability is used,
that is µ = 0.1. Also, the generation number K is set to
be small and the population size is between 10 and 40
(this range is often used in PSO).

Since evolutionary algorithms are highly dependent
on the initial random weights, 100 replications of chang-
ing the initial population will be implemented. Also,
while the algorithms search for optimal solution in hy-
perspace, the initial population are drawn randomly
from a uniform distribution from the range [−10.0, 10.0],
which is intentionally set to be large enough to make
the search problem more difficult. The performances of
the algorithms are evaluated by the success rate and the
mean cost function value. The success rate is the fraction
of optimization runs in which an algorithm can achieve
small enough error (i.e., E < Esuc = 10−4).

While using c1 = c2 = 1.0, which is found to be suit-
able for the problems being considered, we shall show
only the best result (i.e., with highest success rate and/or

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 453



Table 1: Test functions
Function Formula Optimal solution Sketch in 2D

F1: Sphere f(x) =
D∑

i=1

x2
i F ∗ = 0, x∗

i = 0

F2: Rosenbroke f(x) =
D−1∑
i=1

(
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

)
F ∗ = 0, x∗

i = 1

F3: Rastrigin f(x) =
D∑

i=1

(
x2

i − 10 cos (2πxi) + 10
)

F ∗ = 0, x∗
i = 0

F4: Griewank f(x) = 1
4000

D∑
i=1

x2
i −

D∏
i=1

cos
(

xi√
i

)
+ 1 F ∗ = 0, x∗

i = 0

Table 2: Parameters resulting in the best performance
of the algorithms for specific problems

Function GA–α PSO–λ HEA–(α, λ)
F1 α = 1.0 λ = 0.2 α = 0.9, λ = 0.4
F2 α = 1.0 λ = 0.6 α = 1.3, λ = 0.7
F3 α = 1.6 λ = 0.5 α = 1.0, λ = 0.4
F4 α = 0.1 λ = 0.7 α = 1.6, λ = 0.6

smallest mean cost) of each algorithm for specific prob-
lem by tuning for the most suitable values of α in the GA,
λ in the PSO, and (α, λ) in the HEA. Let us denote them
as the BLX–α (or GA–α), PSO–λ, and HEA–(α, λ).

In this section the algorithms are investigated
through the optimizations of four functions as shown
in Table 1 with the dimension number of D = 2. In
these functions optimizations, since the optimal solu-
tion is F ∗ = 0, we define E = F where F is the value
of the cost function obtained after a run of the algorithm.

4.1.2 Simulation result

Using the tuned parameters in Table 2, the results of
optimizing the functions are shown in Table 3 for K = 20
and K = 50. It is clear that the HEA usually obtains
higher success rates and lower averaged cost values.

4.2 Neural Network Optimization

4.2.1 Parameter and test design
This section presents the experiment of an NN optimiza-
tion for the well-known exclusive-or problem (XOR) (see
Table 4), which is known as a highly nonlinear multivari-
able optimization problem.

In the NN, a linear function f(x) = x is kept for the
input and output layers while activation for the hidden
layer is a sigmoid function, which is:

f(x) =
1

1 + e−x
(4)

A 2-5-1 structured NN is utilized which results in a
15-variable optimization problem. The initial connec-
tion weights are drawn randomly from the range [-5.0,
5.0]. Performances of the algorithms are also evaluated
through 100 iterations of changing the initial population.
The error function is defined as

E =
4∑

p=1

(Tp −Op)
2 (5)

where Tp is the desired output or teacher signal, Op is
the obtained output value of NN for pattern p, and P

is the number of patterns (for the XOR problem, P = 4).

4.2.2 Simulation result
Table 5 shows the simulation results of the NN opti-
mization with K = 50 and K = 100 generations, using
the GA–0.1, PSO–0.7, and HEA–(0.6, 0.8). Again, the
proposed HEA outperforms the PSO and GA.

5 Discussion and Conclusion

In this research, we have presented a novel hybrid evo-
lutionary algorithm based on a PSO and a real-coded
GA. The performance of the HEA is compared with
those of the canonical approaches, showing a good per-
formance of the proposed method regardless of the small
values of the generation number, population size and the
recombination probability µ.

In the tests the GA demonstrated a poor performance.
This is due to the small values of generation, population
size and the recombination probability µ as well as the
fact that GAs are very sensitive to the initial population.

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 454



Table 3: Success rate [%] and mean cost value (succ.
rate/mean cost) with D = 2, K = 20, 50

Func. N K GA PSO HEA
F1 10 20 1/10.96269 68/0.16374 100/0.0

50 1/10.96269 68/0.16360 100/0.0
20 20 0/0.75099 99/0.00077 100/0.0

50 2/0.10052 99/0.00076 100/0.0
30 20 1/0.49964 100/0.0 100/0.0

50 3/0.08395 100/0.0 100/0.0
40 20 1/0.21150 100/0.0 100/0.0

50 12/0.01293 100/0.0 100/0.0
F2 10 20 0/3006.9817 1/1.69848 1/1.51888

50 0/3006.9817 10/1.26860 8/0.96206
20 20 0/5.92721 1/0.46515 2/0.56743

50 0/2.92093 33/0.21127 35/0.15171
30 20 0/4.23923 4/0.24810 4/0.35501

50 0/2.74650 53/0.06008 63/0.11816
40 20 0/3.22764 3/0.03547 14/0.04609

50 2/2.45530 73/0.00438 92/0.00057
F3 10 20 1/88.29054 5/1.26160 6/1.81855

50 1/88.29054 36/0.99607 24/1.63858
20 20 0/30.36538 10/0.58992 37/0.81628

50 0/11.55541 54/0.42886 60/0.43778
30 20 1/31.93949 18/0.31230 47/0.49963

50 1/13.60421 81/0.19661 82/0.28853
40 20 0/18.76824 29/0.21593 63/0.39942

50 1/5.64692 90/0.06410 88/0.13929
F4 10 20 1/0.25129 7/0.01322 18/0.01153

50 1/0.25129 26/0.01095 27/0.01047
20 20 0/0.05075 12/0.00932 15/0.01206

50 0/0.02451 22/0.00676 20/0.01193
30 20 1/0.04892 13/0.00965 19/0.01083

50 1/0.02640 26/0.00710 27/0.01070
40 20 0/0.03243 14/0.00801 35/0.00779

50 1/0.01320 33/0.00583 38/0.00649

Table 4: The XOR broblem
Pattern no. Input Desired output
p x1 x2 T

1 0 0 0
2 0 1 1
3 1 0 1
4 1 1 0

At the beginning there is a strongly random and diverse
population and the crossover tends to explore the search
space wildly, therefore resulting in low success rates and
several large-error individuals. The PSO appeared to
rapidly converge during the beginning of the search, but
around global optimum the search process becomes slow.
Without a selection operator, individuals tend to follow
the best one and get into a neighborhood of the opti-
mum. This results in a low error in average but not so
many solutions successfully found. In contrast, the pro-
posed HEA could utilize the widespread search of the
BLX at the beginning and the fine-tuning ability of the
PSO when it gets near to the optimum. With a selection
process to eliminate inferior individuals, the HEA thus
balances between finding solution (successfully) and ob-
taining a low averaged cost, especially when K is small.
There are some situations that the HEA is not much
better or even worse than the PSO. This is apparently

Table 5: Success rate [%] and mean error (succ.
rate/mean error) for the NN training with K = 50, 100

N K GA PSO HEA
10 50 0/51.09702 0/0.72811 0/0.89564

100 0/51.09702 1/0.43889 1/0.38902
20 50 0/4.54599 0/0.41958 0/0.28397

100 0/3.87397 13/0.14848 24/0.05066
30 50 0/4.36849 0/0.34127 1/0.25869

100 0/2.82969 23/0.08107 43/0.03092
40 50 0/2.41389 0/0.21741 2/0.10718

100 0/1.79364 37/0.05251 69/0.00970

40

50

60

70

80

0.1 0.5 1.0 1.5 2.0
S

uc
ce

ss
 r

at
e 

[%
]

Recombination probability µ

Figure 3: Performance vs. recombination probability µ

in the HEA (in the case of the NN optimization by the
HEA–(0.6, 0.8) with N = 30, K = 100)

due to the low recombination probability µ used. The
performance of the HEA can be improved when using
higher value of µ. The impact of the recombination to
its performance is shown in Fig. 3 for the NN optimiza-
tion, for example. It appears that a high probability µ

usually (but not always) provides better performance.
For a particular problem, an optimal value of µ is able
(and needed) to be determined.

In this study, although the proposed HEA could
obtain good performance, it is necessary to validate the
algorithm with more complex problems in future work.

References

[1] F. Grimaccia, M. Mussetta, R.E. Zich, “Genetical
Swarm Optimization: Self-adaptive hybrid evolutionary
algorithm for electromagnetics”, IEEE Trans. Antennas

and Propagation Vol.55, Iss.3, pp.781-785, 2007.

[2] J. Kennedy, R.C. Eberhart, “Particle swarm optimiza-
tion”, Proc. of IEEE Intl. Conference on Neural Net-

works, Piscataway, NJ. pp. 1942-1948, 1995.

[3] K.E. Parsopoulos, M.N. Vrahatis, “On the computation
of all global minimizers through Particle swarm opti-
mization”, IEEE Trans. on Evolutionary Computation,
Vol. 8, Iss. 3, pp. 211-224, 2004.

[4] L.J. Eshelman, D.J. Schaffer, “Real-coded genetic algo-
rithms and interval-schemata”, in L.D. Whitley (ed.)
Foundations of genetic algorithms 2, Morgan Kauf-
mann, pp 187-202, 1993.

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 455




