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Abstract

Informally, a parallel Turing machine (PTM) pro-
posed by Wiedermann is a set of identical usual se-
quential Turing machines (STM ’s) cooperating on two
common tapes − storage tape and input tape. More-
over, STM ’s which represent the individual proces-
sors of the parallel computer can multiply themselves
in the course of computation. On the other hand,
during the past about seven years, automata on a
four-dimensional tape have been proposed as compu-
tational models of four-dimensional pattern processing
and several properties of such automata have been ob-
tained. In [1], we proposed a four-dimensional parallel
Turing machine (4-PTM), and dealt with a hardware-
bounded 4-PTM , which each side-length of each input
tape is equivalent. We believe that this machine is
useful in measuring the parallel computational com-
plexity of three-dimensional images. In this paper, we
continue the study of 3-PTM , which each side-length
of each input tape is equivalent, and investigate some
accepting powers of it.
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1 Introduction

A parallel Turing machine (PTM) is a set of iden-
tical sequential Turing machines (STM ’s) cooperating
on two common tapes − storage tape and input tape
[8]. Moreover, STM ’s which represent the individual
processors of the parallel computer can multiply them-
selves in the course of computation. In [8] it is shown,
for example, that every PTM can be simulated by an
STM in polynomial time, and that the PTM cannot
be simulated by any sequential Turing machine in lin-
ear space.

In [2,4,6,7], two- or three-dimensional version of

PTM was investigated. On the other hand, due to
the advances in many application areas such as mov-
ing image processing, computer animation, and so on,
it has become increasingly apparent that the study of
four-dimensional pattern processing has been of cru-
cial importance. Thus, we think that the study of
four-dimensional automata as a computational model
of four-dimensional pattern processing has also been
meaningful. From this viewpoint, we first introduced
four-dimensional automata [3,5]. In [1], we proposed
a four-dimensional parallel Turing machine (4-PTM),
and investigated its some properties. Especially, we
dealt with a hardware-bounded 4-PTM , a variant of
the 4-PTM , which each side-length of each input tape
is equivalent. The hardware-bounded 4-PTM is a 4-
PTM , the number of whose processors is bounded by
a constant or variable depending on the size of inputs.
The investigation of hardware-bounded 4-PTM ’s is
more useful than that of 4-PTM ’s from the practi-
cal point of view. In this paper, we continue the study
of 4-PTM [1], and investigate some accepting powers
of its parallel computational model, which each side-
length of each input tape is equivalent.

2 Preliminaries

Definition 2.1. Let Σ be a finite set of symbols,
a four-dimensional tape over Σ is a four-dimensional
rectangular array of elements of Σ. The set of all four-
dimensional tapes over Σ is denoted by Σ(4). Given a
tape x ∈ Σ(4), for each integer j (1 ≤ j ≤ 4), we let
lj(x) be the length of x along the jth axis. The set
of all x ∈ Σ(4) with l1(x) = n1, l2(x) = n2, l3(x)=n3

and l4(x)=n4 is denoted by Σ(n1,n2,n3,n4). When 1 ≤
ij ≤ lj(x) for each j (1 ≤ j ≤ 4), let x(i1, i2, i3, i4)
denote the symbol in x with coordinates (i1, i2, i3, i4).
Furthermore, we define

x[(i1, i2, i3, i4),(i′1, i
′
2, i

′
3, i

′
4)],
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only when 1 ≤ ij ≤ i′j ≤ lj(x) for each integer
j (1 ≤ j ≤ 4), as the four-dimensional input tape y
satisfying the following conditions:
(1) for each j (1 ≤ j ≤ 4), lj(y) = i′j − ij + 1;
(2) for each r1, r2, r3, r4 (1 ≤ r1 ≤ l1(y), 1 ≤

r2 ≤ l2(y), 1 ≤ r3 ≤ l3(y), 1 ≤ r4 ≤ l4(y)),
y (r1,r2,r3,r4) = x (r1+i1-1, r2+i2-1, r3+i3-1,
r4+i4-1). (We call x[(i1, i2, i3, i4),(i′1, i

′
2, i

′
3, i

′
4)]

the [(i1, i2, i3, i4),(i′1,i
′
2, i

′
3, i

′
4)]-segment of x.)

Definition 2.2. Four-dimensional parallel Turing
machine (denoted by 4-PTM) is a 10-tuple M = (Q,
E, U , qs, q0, Σ, Γ, F , δn, δf ), where
(1) Q = E ∪ U ∪ {q0} is a finite set of states;
(2) E is a finite set of nondeterministic states;
(3) U is a finite set of fork states;
(4) qs is the quiescent state;
(5) q0 ∈ Q - {qs} is the initial state;
(6) Σ is a finite input alphabet (# /∈ Σ is the boundary

symbol);
(7) Γ is a finite storage tape alphabet containing the

special blank symbol B;
(8) F ⊆ Q −{qs} is the set of accepting states;
(9) δn : E × (Σ ∪ {# }) × Γ →

2(Q−{qs})×(Γ−{B})×Din×Ds (where Din = {east,
west, south, north, up, down, future, past, no
move} and Ds = {left, right, no move}) is a next
nondeterministic more function; and

(10) δf : U× (Σ ∪ {# }) × Γ → ∪1≤k≤∞ ((Q −
{qs}) × (Γ − {B}) × Din × Ds) is a next fork
more function with the restriction that for each
q ∈ U , each a ∈ Σ ∪ {# }, and each A ∈ Γ, if
δ(q, a, A) = ((p1, c1, d11, d21), (p2, c2, d12, d22), . . .,
(pk, ck, d1k, d2k)), then c1 = c2 = . . . = ck.

As shown in Figure 1, M has a read-only four-
dimensional rectangular input tape with boundary
symbols “#’s”, and one semi-infinite storage tape (ex-
tended to the right), initially filled with the blank
symbols. Furthermore, M has infinite processors,
P1, P2, . . ., each of which has its input head and
storage-tape head. M starts in the situation that (1)
the processors P1 is in the initial state q0 with its input
head on the upper northwestmost corner of the first
cube of the input tape and with its storage-tape head
on the leftmost cell of the storage tape, and (2) each
of other processors is in the quiescent state qs with its
input head on the upper northwestmost corner of the
first cube of the input tape and with its storage-tape
head on the leftmost cell of the storage tape.

Seven-way four-dimensional parallel Turing ma-
chine (denoted by SV 4-PTM) is a 4-PTM , input
heads of whose processors cannot move in the past

Figure 1: Four-dimensional parallel Turing machine.

direction. In this paper, we are concerned with three-
dimensional parallel Turing machines, which each side-
length of each input tape is equivalent. Let L : N → N
and H : N → N be functions. A 4-PTM (SV 4-PTM)
M is called L(n) space-bounded if for any n ≥ 1 and for
any input tape x with l1(x) = l2(x) = l3(x) = l4(x) =
n, M on x uses at most L(n) cells of the storage tape,
and M is H(n) hardware-bounded if for any n ≥ 1 and
for any input tape x with l1(x) = l2(x) = l3(x) =
l4(x) = n, M on x activates at most H(n) processors.
We use the following notations:

• D4-PTM(L(n),H(n)): the class of sets of cubic
tapes accepted by L(n) space-bounded and H(n)
hardware-bounded deterministic 4-PTM ’s

• N4-PTM(L(n),H(n)): the class of sets of cubic
tapes accepted by L(n) space-bounded and H(n)
hardware-bounded nondeterministic 4-PTM ’s

• DSV 4-PTM(L(n), H(n)): the class of sets of
cubic tapes accepted by L(n) space-bounded
and H(n) hardware-bounded deterministic SV 4-
PTM ’s

• NSV 4-PTM(L(n),H(n)): the class of sets of cu-
bic tapes accepted by L(n) space-bounded and
H(n) hardware-bounded nondeterministic SV 4-
PTM ’s
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3 Seven-Way versus Eight-Way

This section investigates a relationship between the
accepting powers of SV 4-PTM ’s and 4-PTM ’s.

Theorem 3.1. Let H : N → N be a function such
that

(
H(n)

2

)
< n

2 (n ≥ 2). Furthermore, Let L : N → N
and H’ : N → N be functions such that

(1) ∃n0 ∈ N, ∀n ≥ n0 [
(
H′(n)

2

)
≤

(
H(n)

2

)
], and

(2) max { H ′(n)2
(
H(n)

2

)
log n,

H ′(n)2
(
H(n)

2

)
log L(n),

L(n)H ′(n)
(
H(n)

2

)
} = o(n).

Then,
D4-PTM(1,2) − NSV 4-PTM(L(n),H ′(n)) ̸= ϕ.

Proof: Let T1 = {x ∈ {0, 1, 2}(4)|∃n ≥ 3[l1(x) =
l2(x) = l3(x) = l4(x) = n & there exists an odd num-
ber i (3 ≤ i ≤ n) such that
(i) x[(1, 1, 1, 1), (n, n, n, i − 1)] ∈ {0, 1}(4),
(ii) x[(1, 1, 1, i), (n, n, n, n)] ∈ {2}(4), and
(iii)∀j(1 ≤ j ≤ i − 1) [the jth cube of x is identical
with the (i-j)th cube of x]]}.

It is easily seen that T1 ∈ D4-PTM(1,2). On
the other hand, by using the idea as in the proof of
Theorem 3.1 in [1], we can show that T1 /∈ NSV 4-
PTM(L(n),H ′(n)) for any L(n) and any H ′(n) in the
theorem. The proof is obtained by replacing V (n) (in
the proof of Theorem 3.1 in [1]) with T1(n), where for
large n ≥ 2

(
H(n)

2

)
+ 1, let

T1(n) = {x ∈ {0, 1, 2}(4)|
l1(x) = l2(x) = l3(x) = l4(x) = n &

x[(1, 1, 1, 1), (n, n, n, 2
(
H(n)

2

)
)] ∈ {0, 1}(4)&

x[(1, 1, 1, 2
(
H(n)

2

)
+ 1), (n, n, n, n)] ∈ {2}(4)&

∀i(1 ≤ i ≤
(
H(n)

2

)
)[the ith cube of x is

identical with the (2
(
H(n)

2

)
+ 1 − i)th cube of x]}.

¤

Corollary 3.1. For any integer k ≥ 1,

D4-PTM(1,2) − NSV 4-PTM(o(n), k) ̸= ϕ.

Letting H(n) = ⌈n 1
4 ⌉, L(n) = 1, and H ′(n) = ⌈n 1

5 ⌉
(⌈r⌉ means the smallest integer greater than or equal
to r.) in Theorem 3.1, we also have

Corollary 3.2.

D4-PTM(1,2) − NSV 4-PTM(1, ⌈n 1
5 ⌉) ̸= ϕ.

4 Determinism versus Nondetermin-
ism

This section investigates a relationship between the
accepting powers of deterministic and nondeterminis-
tic seven-way 4-PTM ’s.

Theorem 4.1. Let H,L, and H ′ be functions de-
scribed in Theorem 3.1. Then,

NSV 4-PTM(1,2)− DSV 4-PTM(L(n),H ′(n)) ̸= ϕ.

Proof: Let T2 = {x ∈ {0, 1, 2}(4)|∃n = 2m + 1 ≥
3[l1(x) = l2(x) = l3(x) = l4(x) = n & (there exists an
integer i (3 ≤ i ≤ n) such that
(i) x[(1, 1, 1, i), (n, n, n, n)] ∈ {2}(4),
(ii) ∀j(1 ≤ j ≤ i − 1) [wj = x[(1, 1, 1, j), (m,n, n, j)] ∈
{0, 1}(4) & x[(m+1, 1, 1, j), (m+1, n, n, j)] ∈ {2}(4) &
w′

j=x[(m + 2, 1, 1, j), (n, n, n, j)] ∈ {0, 1}(4)],
(iii) ∃k,∃l (1 ≤ k < l ≤ i − 1) [wk =
x[(1, 1, 1, k), (m,n, n, k)] ∈ {0, 1}(4) &
x[(m + 1, 1, 1, k), (m + 1, n, n, k)] ∈ {2}(4) &
w′

k=x[(m + 2, 1, 1, k), (n, n, n, k)] ∈ {0, 1}(4) &
wl=x[(1, 1, 1, l), (m,n, n, l)] ∈ {0, 1}(4) &
x[(m + 1, 1, 1, l), (m + 1, n, n, l)] ∈ {2}(4) &
w′

l = x[(m + 2, 1, 1, l), (n, n, n, l)] ∈ {0, 1}(4) &
wk = wl & w′

k ̸= w′
l])]}.

That is, each cube consists of a tag field wj and a
value filed w′

j . A tape x is in T2 iff there is a pair of
cubes (of x) with the same tag field but different value
fields and the bottom cubes of x consist of 2’s. Clearly
T2 ∈ NSV 4-PTM(1,2).

We below show that T2 /∈ DSV 4-
PTM(L(n),H ′(n)). We just present the main
idea here and leave the details to the reader, as they
are quite similar to those of the proof of Theorem 3.1
in [1]. For each integer n = 2m + 1 ≥ 2

(
H(n)

2

)
+ 1, let

T2(n) = {x ∈ T2|l1(x)=l2(x)=l3(x)=l4(x)=n &
∀j(1 ≤ j ≤ 2

(
H(n)

2

)
)[(wj consists of the former

continuous a 1’s and the latter continuous m(2m +
1)(2m + 1)−a 0’s by scanning wj systematically from
the first plane to the (2m + 1)th plane in wj , from the
first column to the (2m + 1)th column in a plane and
from the first row to the mth row in a column) (a =
min{j, 2

(
H(n)

2

)
+1−j}) and w′

j={0, 1}m(2m+1)(2m+1)]
& x[(1,1,1,2

(
H(n)

2

)
+1),(n, n, n, n)] ∈ {2}(4) }.

As in the proof of Theorem 3.1 in [1], there can be
constructed a tape in T2(n) which M will reject, using
the fact that there are many words having this tag
structure such that the jth cube and the (2

(
H(n)

2

)
+

1 − j)th cube are identical for 1 ≤ j ≤
(
H(n)

2

)
(and

thus not in T2). ¤
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Letting H(n)=⌈n 1
4 ⌉, L(n)=1, and H ′(n)=⌈n 1

5 ⌉ in
Theorem 4.1, we have

Corollary4.1

NSV 4-PTM(1,2) − DSV 4-PTM(1, ⌈n 1
5 ⌉) ̸= ϕ.

5 Conclusion

This paper investigated some accepting powers of
four-dimensional parallel Turing machines, which each
side-length of each input tape is equivalent. We con-
clude the paper by giving some open problems.

(1) What is a hierarchy of the accepting powers of 4-
PTM ’s or SV 4-PTM ’s, based on the hardware
complexity depending on the input length?

(2) What is a relationship between the accepting
powers of deterministic and nondeterministic 4-
PTM ’s with bounded hardware?

(3) For any k ≥ 1,

D4-PTM(1, k + 1)−N4-PTM(o(logn), k) ̸= ϕ?
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