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Abstract
A parallel Turing machine (PTM) proposed by Wie-

dermann is a set of identical usual sequential Turing
machines (STM ’s) cooperating on two common tapes
− storage tape and input tape. On the other hand,
due to the advances in many application areas such as
motion picture processing, computer animation, virtual
reality systems, and so forth, it has become increas-
ingly apparent that the study of four-dimensional pat-
tern has been of crucial importance. Thus, we think
that the study of four-dimensional automata as a com-
putational model of four-dimensional pattern process-
ing has also been meaningful. In this paper, we propose
a four-dimensional parallel Turing machine (4-PTM),
and investigate its some properties, based on hardware
complexity.

Key Words: computational complexity, four-
dimensional automaton, hardware-bounded computa-
tion, parallel Turing machine, space constructibility

1 Introduction

Informally, a parallel Turing machine (PTM) is a set
of identical sequential Turing machines (STM ’s) coop-
erating on two common tapes − storage tape and input
tape [6]. Moreover, STM ’s which represent the indi-
vidual processors of the parallel computer can multiply
themselves in the course of computation. In [6] it is
shown, for example, that every PTM can be simulated
by an STM in polynomial time, and that the PTM
cannot be simulated by any sequential Turing machine
in linear space.

In [1,2], two- or three-dimensional version of PTM
was investigated. On the other hand, due to the ad-
vances in many application areas such as motion pic-
ture processing, computer animation, and so forth, it
has become increasingly apparent that the study of
four-dimensional pattern processing has been of cru-
cial importance. Thus, we think that the study of

four-dimensional automata as a computational model
of four-dimensional pattern processing has also been
meaningful. During the past about seven years, au-
tomata on a four-dimensional tape have been proposed
and several properties of such automata have been ob-
tained . In this paper, we propose a four-dimensional
parallel Turing machine (4-PTM), and investigate its
some properties. Especially, we deal with a hardware-
bounded 4-PTM , a variant of the 4-PTM , which each
side-length of each input tape is equivalent.

2 Preliminaries

Definition 2.1. Let Σ be a finite set of symbols, a
four-dimensional tape over Σ is a four-dimensional rect-
angular array of elements of Σ. The set of all four-
dimensional tapes over Σ is denoted by Σ(4). Given a
tape x ∈ Σ(4), for each integer j (1 ≤ j ≤ 4), we let lj(x)
be the length of x along the jth axis. The set of all x ∈
Σ(4) with l1(x) = n1,l2(x) = n2,l3(x)=n3 and l4(x)=n4

is denoted by Σ(n1,n2,n3,n4). When 1 ≤ ij ≤ lj(x) for
each j (1 ≤ j ≤ 4), let x(i1, i2, i3, i4) denote the sym-
bol in x with coordinates (i1, i2, i3, i4). Furthermore,
we define

x[(i1, i2, i3, i4),(i′1, i
′
2, i

′
3, i

′
4)],

only when 1 ≤ ij ≤ i′j ≤ lj(x) for each integer j (1 ≤
j ≤ 4), as the four-dimensional input tape y satisfying
the following conditions:

(1) for each j (1 ≤ j ≤ 4), lj(y) = i′j − ij + 1;
(2) for each r1, r2, r3, r4 (1 ≤ r1 ≤ l1(y),

1 ≤ r2 ≤ l2(y), 1 ≤ r3 ≤ l3(y), 1 ≤ r4 ≤
l4(y)), y (r1,r2,r3,r4) = x (r1+i1-1, r2+i2-1, r3+i3-
1, r4+i4-1). (We call x[(i1, i2, i3, i4),(i′1, i

′
2, i

′
3, i

′
4)] the

[(i1, i2, i3, i4),(i′1,i
′
2, i

′
3, i

′
4)]-segment of x.)

Definition 2.2. Four-dimensional parallel Turing ma-
chine (denoted by 4-PTM) is a 10-tuple M = (Q, E,
U , qs, q0, Σ, Γ, F , δn, δf ), where

(1) Q = E ∪ U ∪ {q0} is a finite set of states;
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(2) E is a finite set of nondeterministic states;
(3) U is a finite set of fork states;
(4) qs is the quiescent state;
(5) q0 ∈ Q - {qs} is the initial state;
(6) Σ is a finite input alphabet (# /∈ Σ is the bound-

ary symbol);
(7) Γ is a finite storage tape alphabet containing the

special blank symbol B;
(8) F ⊆ Q −{qs} is the set of accepting states;
(9) δn : E × (Σ ∪ {# }) × Γ →

2(Q−{qs})×(Γ−{B})×Din×Ds (where Din = {east, west,
south, north, up, down, future, past, no move} and
Ds = {left, right, no move}) is a next nondeterministic
move function; and

(10) δf : U× (Σ∪{# }) × Γ →∪1≤k≤∞ ((Q−{qs})×
(Γ − {B}) × Din × Ds) is a next fork more function
with the restriction that for each q ∈ U , each a ∈ Σ ∪
{# }, and each A ∈ Γ, if δ(q, a,A) = ((p1, c1, d11, d21),
(p2, c2, d12, d22), . . ., (pk, ck, d1k, d2k)), then c1 = c2 =
. . . = ck.

As shown in Figure.1, M has a read-only four-
dimensional rectangular input tape with boundary sym-
bols “#’s”, and one semi-infinite storage tape (extended
to the right), initially filled with the blank symbols. Fur-
thermore, M has infinite processors, P1, P2, . . ., each of
which has its input head and storage-tape head. M
starts in the situation that (1) the processors P1 is in
the initial state q0 with its input head on the upper
northwestmost corner of the first cube of the input tape
and with its storage-tape head on the leftmost cell of
the storage tape, and (2) each of other processors is in
the quiescent state qs with its input head on the upper
northwestmost corner of the first cube of the input tape
and with its storage-tape head on the leftmost cell of
the storage tape.

Seven-way four-dimensional parallel Turing machine
(denoted by SV 4-PTM) is a 3-PTM , input heads of
whose processors cannot move in the past direction. In
this paper, we are concerned with three-dimensional
parallel Turing machines, which each side-length of
each input tape is equivalent. Let L : N → N and
H : N → N be functions. A 4-PTM (SV 4-PTM) M is
called L(n) space-bounded if for any n ≥ 1 and for any
input tape x with l1(x) = l2(x) = l3(x) = l4(x) = n, M
on x uses at most L(n) cells of the storage tape, and M
is H(n) hardware-bounded if for any n ≥ 1 and for any
input tape x with l1(x) = l2(x) = l3(x) = l4(x) = n,
M on x activates at most H(n) processors. We use the
following notations:

· D4-PTM(L(n),H(n)): the class of sets of four-

s

s

four-dimensional 

input tape

thee-dimensional 

rectangular array

storage tape

storage-tape heads

processors

input  heads

Figure 1: Three-dimensional parallel Turing machine.

dimensional tapes accepted by L(n) space-bounded and
H(n) hardware-bounded deterministic 4-PTM ’s.

· N4-PTM(L(n),H(n)): the class of sets of four-
dimensional tapes accepted by L(n) space-bounded and
H(n) hardware-bounded nondeterministic 4-PTM ’s.

· DSV 4-PTM(L(n),H(n)): the class of sets of four-
dimensional tapes accepted by L(n) space-bounded and
H(n) hardware-bounded deterministic SV 4-PTM ’s.

· NSV 4-PTM(L(n),H(n)): the class of sets of four-
dimensional tapes accepted by L(n) space-bounded
and H(n) hardware-bounded nondeterministic SV 4-
PTM ’s.

3 Main Results

This section mainly investigates accepting powers of
SV 4-PTM ’s, based on hardware complexity.

A function L : N → N is fully space constructible by
a k head one-dimensional deterministic Turing machine
if there is a k head one-dimensional deterministic Turing
machine [5] M such that for any n ≥ 1 and any input
word x of length n, M on x marks off exactly L(n) cells
of the storage tape and halts. (In this case, we say that
M constructs the function L.)

Theorem 3.1. Let H : N → N be a function which
satisfies the following (1), (2), and (3), where k ≥ 1 is
an integer :
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(1) H is fully space constructible by a k head one-
dimensional deterministic Truing machine;

(2) ∃n0 ∈ N, ∀n ≥ n0 [H(n) ≥ k];
(3)

(
H(n)

2

)
≤ n

2 (n ≤ 2).
Furthermore, let H ′ : N → N and L : N → N be

functions which satisfy the following (4) and (5):
(4) ∃n0 ∈ N, ∀n ≥ n0 [

(
H′(n)

2

)
≤

(
H(n)

2

)
];

(5) max { H ′(n)2
(
H(n)

2

)
log n,

H ′(n)2
(
H(n)

2

)
log L(n),

L(n)H ′(n)
(
H(n)

2

)
} = o(n).

Then,
DSV 4-PTM(H(n),H(n)) − NSV 4-PTM(L(n),

H ′(n)) 6= φ.

Proof: Let T (H) be the following set depending on the
function H in the theorem:

T (H) = { x ∈ {0, 1}(4) | ∃n ≥ 2
(
H(n)

2

)
[l1(x)=l2(x)

=l3(x)=l4(x)=n & ∀i(1 ≤ i ≤
(
H(n)

2

)
) [the ith cube of

x is identical with the (2
(
H(n)

2

)
+1−i)th cube of x]] }.

To prove the theorem, we show that T (H) ∈ DSV 4-
PTM (H(n),H(n)) − NSV 4-PTM (L(n),H(n)).
T (H) is accepted by an H(n) space-bounded and H(n)
hardware-bounded DSV 4-PTM M which acts as fol-
lows. Suppose that an input tape x with l1(x) = l2(x) =
l3(x) = l4(x) = n is presented to M . Let M1 be a
k head one-dimensional deterministic Turing machine
which constructs the function H. By simulating the ac-
tion of M1 on the first cube of x, the first k processors
P1, P2, . . . , Pk of M mark off exactly H(n) cells of the
storage tape.

After this, each processor Pi(2 ≤ i ≤ k) positions
its storage-tape head on the ith cell (from the left) of
the storage tape, and processor P activates processors
Pk+1, Pk+2, . . . , PH(n) in such a way that for each j
(k + 1 ≤ j ≤ H(n)), the storage-tape head of Pj is
positioned on the jth cell (from the left) of the stor-
age tape. Then P1 positions the input head at the
northwestmost corner of the (2

(
H(n)

2

)
+ 2 − H(n))th

cube of x, which for each i (2 ≤ i ≤ H(n)), Pi po-
sitions the input head on the northwestmost corner of
the (H(n) − i + 1)th cube of x. And P1 systemati-
cally traverses the (2

(
H(n)

2

)
+2−H(n))th cube, . . ., the

2
(
H(n)

2

)
th cube (from the first plane to the last plane

in each cube, from the first column to the last column
in each plane, and from the first row to the last row
in each column), and compares these cubes with the
(H(n)−1)th cubes, . . . , the first cubes, respectively, by
using the information from P2, P3, . . . , PH(n).

These input heads are then positioned at the north-
westmost end of the H(n)th cube of x. The same pro-

cedure is used inductively to verify that H(n)th cube
through the (2

(
H(n)

2

)
+ 1 − H(n))th cube has a desired

form.
Next, we show that T (H) /∈ NSV 4-PTM (L(n),

H ′(n)). Suppose to the contrary that there is an NSV 4-
PTM (L(n),H ′(n)) M ′ accepting T (H). Let s and t be
the numbers of states of the finite control of each pro-
cessor and storage tape symbols of M ′, respectively. For
large n ≥ 2

(
H(n)

2

)
, let

V (n) = { x ∈ {0, 1}(4) | l1(x) = l2(x) = l3(x) =
l4(x) = n & ∀i (1 ≤ i ≤

(
H(n)

2

)
) [the ith cube of x

is identical with the (2
(
H(n)

2

)
+ 1 − i)th plane of x] &

[(1, 1, 1, 2
(
H(n)

2

)
+ 1), (n, n, n, n)] ∈ {0}(4) }.

Below, we consider the computation of M ′ on input
tapes in V (n). Clearly, each tape x in V (n) is in T (H),
and so x is accepted by M ′.

A configuration of M ′ is an infinite-tuple (α,
((h1, k1, j1, i1), q1, r1), ((h2, k2, j2, i2), q2, r2), ...,
((hm, km, jm, im), qm, rm), . . . ) where α is the non-
blank contents of the storage tape of M ′, and for each
m ≥ 1, (hm, km, jm, im), qm and rm are the input
head position, the state of the finite control and the
position of storage-tape head of the mth processor
of M ′, respectively. The type of a configuration
C=(α, ((h1, k1, j1, i1), q1, r1), ((h2, k2, j2, i2), q2, r2), ...,
((hm, km, jm, im), qm, rm), . . . ), denoted by Type(C),
is an infinite-tuple ([i1], ..., [im], . . .), where for each
m ≥ 1,

[im] = { im if im ≤
(
H(n)

2

)
2
(
H(n)

2

)
otherwise.

Let c1(x), c2(x), ..., clx(x) be the sequence of config-
urations of M ′ during an (arbitrary selected) accepting
computation of M ′ on a tape x in V (n). Here lx is the
length of this computation. Let d1(x), d2(x), . . . , dl′x(x)
be the subsequence obtained by selecting c1(x) and
all subsequent ci(x)’s such that Type(ci(x)) 6=
Type(ci+1(x)). We call d1(x), d2(x), . . . , dl′x(x) the pat-
tern of x. Let p(n) be the number of possible pattern of
M ′ on x in V (n). Since L′

x ≤ H ′(n)(2
(
H(n)

2

)
− 1) + 1 ≡

Q(x) (note that M ′ uses at most H ′(n) processors when
it reads tapes in V (n)), we get the following inequality:

p(x) ≤ ((s(n + 1)(n + 1)(n + 1)(n +
1)L(n))H′(m)tL(n)

)Q(n).
Now we classify the tapes in V (n) according to their

patterns. There must exist a pattern d̂1, d̂2, . . . , d̂l which
corresponds to a set S(n) of at least 2n×n×n×(H(n)

2 ) /
p(n) tapes in V (n). Since

(
H′(n)

2

)
≤

(
H(n)

2

)
(from con-

dition (4) in the theorem), the same observation as in
the proof of Theorem 3 in [3] reveals that for any com-
putation of M ′ on an x ∈ V (n), there exists an index i
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such that the ith cube of x and the (2
(
H(n)

2

)
+ 1 − i)th

cube of x are never being read simultaneously.
Let i0 be such a value for the pattern d̂1, d̂2, . . . , d̂l.

we now define a binary relation E on tapes in S(n) as
follows: For each u and v in S(n), let

uEv ⇔ ∀i(/∈ {i0, i0, i0, 2
(
H(n)

2

)
+ 1 − i0) [ith cubes of

u and v are identical].
Obviously the relation E is an equivalence relation,

and there are q(n) = 2n3((H(n)
2 )−1) E-equivalence classes

of tapes in S(n). From condition (5) in the theorem, we
can easily show that |S(n)| > q(n) for large n. There-
fore, there exist two different tapes in S(n) which belong
to the same equivalence class. Let x and y be such two
different tapes in S(n). And let z be the tape obtained
from x by replacing the (2

(
H(n)

2

)
+ 1 − i0)th cube with

the (2
(
H(n)

2

)
+ 1 − i0)th cube of y. By an argument

similar to that in the proof of theorem 1 in [7], it can
be shown that there is an accepting computation of M ′

on z. Consequently, z must be accepted by M ′. This
contradicts the fact z is not in T (H). ¤

We consider the following functions:

· log(1)n = { 0 (n = 0)
dlogne (n ≥ 1),

and for each r ≥ 1,
· log(r+1)n = log(1)(log(r)n).

It is shown in [4] that the function log(k)n (k ≥ 1) are
fully space-constructible by three head one-dimensional
deterministic Turing machines. A similar result is pro-
vided about the four dimensions. From this fact and
Theorem 3.1, we have:

Corollary 3.1. For each k ≥ 3,
DSV 4-PTM (log(k)n, log(k)n) − NSV 4-PTM

(log(k)n, log(k+1)n) 6= φ.

Corollary 3.2. For each X ∈ {D,N} and each k ≥ 3,
XSV 4-PTM (log(k)n, log(k+1)n) ⊆ XSV 4-PTM

(log(k)n, log(k)n).

Letting H(n) = k + 1 (where k is a positive integer),
H ′(n) = k, and L(n) = o(n) in Theorem 3.1, we have :

DSV 4-PTM (k + 1, k + 1) − NSV 4-PTM (0(n), k)
6= φ.

From this and from the obvious fact that

DSV 4-PTM (k +1, k +1) = DSV 4-PTM(1, k +1),

we have the following corollary.

Corollary 3.3. For any integer k ≥ 1,
DSV 4-PTM (1, k+1) − NSV 4-PTM (o(n), k) 6= φ.

4 Conclusion

This paper investigated fundamental properties
of four-dimensional parallel Turing machines with
bounded number of processors. We conclude the pa-
per by giving several open problems.

(1) What is a relationship between the accepting
powers of SV 4-PTM ’s and 4-PTM ’s?

(2) What is a hierarchy of the accepting powers of
SV 4-PTM ’s, based on the hardware complexity de-
pending on the side-length of input tapes?
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