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Abstract : In this paper, we consider a robust control problem of a two link RR manipulator with uncertainty in
the joint angle which is caused by several factors. The first purpose is to derive an uncertain LTI system of a two
link RR manipulator which includes uncertainty in a rotational angle of each joint. The uncertainty is expressed in a
system structure matrix in an explicit form. For this uncertain system, we apply guaranteed cost control. At last, we
show the effectiveness of our method by a numerical example.
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I. Introduction

In practice, the effect of an uncertainty is a considerable
problem. Such an uncertainty is caused by a measurement
error, noise in the signal, secular distortion of the device,
etc. and makes degradation of the performance index. One
of an approach to deal with the influence of uncertainty is
to include these effects in the form of the LTI system by a
structured uncertainty. By using this uncertain system, it
is able to design the robust control system. S.S.Chang and
T.K.C.Peng proposed a new robust control method which
called the guaranteed cost control [1]. This method guar-
antees the existence of an upper bound of an uncertainty in
the performance index. Yamamoto et al. showed a devia-
tion method for the structured uncertainty that is caused by
the higher order terms of the Taylor series expansion [2].
N. Takahashi et al. showed a generalization of the guar-
anteed cost control problem [3]. Kono et al. extended this
problem to the case with cross-term in the performance in-
dex [4]. Sato et al. considered the object throwing motion
problem that by the manipulator with a passive revolute
joint [5]. Takahashi et al. extended the guaranteed cost
control problem to the case with an uncertainty in an out-
put matrix [6] and introduced an uncertainty in the angle
of a car inverted pendulum system [7]. In this paper, we
will introduce two uncertainties in a joint angle of the ma-
nipulator system and will apply the guaranteed cost con-
trol to our uncertain LTI system. Through the numerical
example, we will show the effectiveness of our method. In
section II, we will show the formulation of the uncertain
LTI system of a two link RR manipulator with a passive
revolute joint. And we will apply the guaranteed cost con-
trol to the uncertain LTI system to design a robust stable

system. In section III, we will give a numerical example
to show the effectiveness of our proposed method. At last,
we will give a conclusion in section IV.

II. Formulation of uncertain system

In this section, we will give a formulation of the uncertain
LTI system of a two link RR manipulator and apply the
guaranteed cost control to this uncertain system. The link
1 is connected to the base with a rotational joint 1 and the
link 2 is connected to another end point of the link 1 with
a rotational joint 2. Each joints and arms have physical
parameters illustrated in table 1.

Table.1: Parameters of the Manipulator
Parameters Meaning [unit]

θi Angle of the Joint [rad]
mi Mass of the Arm [kg]
Ii Inertia moment of the Arm [kg · m2]
li Length of the Arm [m]
lGi Distance from the joint to the center

of gravity of the Arm [m]
g Gravity [m/sec2]
τi Input torque to the joint [N· m]

It is well know that the equation of the motion of a two
link RR manipulator is expressed as following nonlinear
differential equation.

H(θ)θ̈ + h(θ, θ̇) + g(θ) = τ (1)

where

θ =
[

θ1

θ2

]
, τ =

[
τ1

τ2

]
(2)
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Inertia term H(θ) is

H(θ)

=
[

I1 + m1l
2
G1 + I2 + m2(l21 + l2G2 + 2l1lG2c2)
I2 + m2(l2G2 + l1lG2c2)

I2 + m2(l2G2 + l1lG2c2)
I2 + m2l

2
G2

]
(3)

Nonlinear term h(θ) is

h(θ, θ̇) =
[ −m2l1lG2(θ̇2

2 + θ̇1θ̇2)s2

−m2l1lG2θ̇1θ̇2s2

]
(4)

Gravity term g(θ) is

g(θ) =
[ −m1glG1s1 − m2g(l1s1 + lG2s12)

−m2glG2s12

]

=
[

g1(θ)
g2(θ)

]
(5)

where we denote sin(θ1 + θ2) = s12 and cos(θ1 +
θ2) = c12. If we assume that θ̇1 and θ̇2 takes very small
value, thus θ̇2

2, θ̇1θ̇2 → 0 and the nonlinear term becomes
h(θ, θ̇) = 0. From Eq. (1), we have

H(θ)θ̈ + g(θ) = τ (6)

By multiplying from the left by H(θ)−1, we get

θ̈ = −H(θ)−1g(θ) + H(θ)−1τ (7)

Here we define

H(θ) =
[

h11 h12

h12 h22

]

Then, we have

H(θ)−1 =
1

hD

[
h22 −h12

−h12 h11

]

hD = h11h22 − h2
12

and

θ̈(t) =
1

hD

[ −h22g1(θ) + h12g2(θ)
h12g1(θ) − h11g2(θ)

]

+
1

hD

[
h22 −h12

−h12 h11

] [
τ1

τ2

]
(8)

We consider that the rotational angle of joint 1 θ1(t) and
joint 2 θ2(t) include uncertainties Δθ1 and Δθ2, respec-
tively.

θ1(t) = θ∗1(t) + Δθ1 (9)

θ2(t) = θ∗2(t) + Δθ2 (10)

where θ∗1(t) and θ∗2(t) denote nominal angle of joints. Let
us assume that Δθ1 and Δθ2 are very small values, then

sin Δθ1 → 0
sin Δθ2 → 0
cosΔθ1 → Δc1

cosΔθ2 → Δc2

Thus, we have

sin(θ1(t)) = sin(θ∗1(t))Δc1 + cos(θ∗(t))
= Δc1 sin(θ∗1(t)) (11)

cos(θ1(t)) = cos(θ∗1(t))Δc1 − sin(θ∗1(t))
= Δc1 cos(θ∗1(t)) (12)

Next, we apply a same operation to θ2(t),

sin(θ2(t)) = Δc2 sin(θ∗2(t)) (13)

cos(θ2(t)) = Δc2 cos(θ∗2(t)) (14)

Moreover, about θ1(t) + θ2(t),

sin(θ1(t) + θ2(t))
= sin(θ1(t)) cos(θ2(t)) + cos(θ1(t)) sin(θ2(t))
= Δc1Δc2 sin(θ∗1(t)) cos(θ∗2(t))

+ Δc1Δc2 cos(θ∗1(t)) sin(θ∗2(t)) (15)

Taking a first-order of the Taylor expansion around
θ∗1(t) = 0 and θ∗2(t) = 0, we can approximate Eqs. (11)-
(15) as follows [7]

sin(θ1(t)) ≈ Δc1θ
∗
1(t)

cos(θ1(t)) ≈ Δc1

sin(θ2(t)) ≈ Δc2θ
∗
2(t)

cos(θ2(t)) ≈ Δc2

sin(θ1(t) + θ2(t)) ≈ Δc1Δc2(θ∗1(t) + θ∗2(t))

In vertue of the above results, the first row element of term
in the left-hand side of Eq. (8) becomes

−h22g1(θ) + h12g2(θ) = h̄11θ
∗
1 + h̄12θ

∗
2 (16)

where

h̄11 = Δc1g(h22(m1lG1 + m2l1)
+ Δc2m2lG2(h22 − h12)) (17)

h̄12 = Δc1Δc2m2glG2(h22 − h12) (18)

The second row element of term in the left-hand side of
Eq. (8) becomes

h12g1(θ) − h11g2(θ) = h̄21θ
∗
1 + h̄22θ

∗
2 (19)
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where

h̄21 = Δc1(−h12g(m1lG1 + m2l1) (20)

+ Δc2m2glG2(h11 − h12))
h̄22 = Δc1Δc2m2glG2(h11 − h12) (21)

h11, h12 and h22 are given as follows

h11 = I1 + m1l
2
G1

+ I2 + m2(l21 + l2G2 + Δc22l1lG2)
h12 = I2 + m2(l2G2 + Δc2l1lG2)
h22 = I2 + m2l

2
G2

Thus we can transform Eq. (8) to following form

θ̈(t) =
1

hD

[
h̄11 h̄12

h̄21 h̄22

]
θ(t)

+
1

hD

[
h22 −h12

−h12 h22

]
τ (22)

Let us define a state vector x(t) and an input vector u(t)
are

x(t) =

⎡
⎢⎢⎣

θ∗1(t)
θ̇∗1(t)
θ∗2(t)
θ̇∗2(t)

⎤
⎥⎥⎦ , u(t) =

[
u1(t)
u2(t)

]

Consequently, we obtain a following uncertain LTI sys-
tem.

ẋ(t) = A(ξ)x(t) + B(ζ)u(t) (23)

where, an input matrix A(ξ) and an output matrix B(ζ)
are

A(ξ) =

⎡
⎢⎢⎣

0 1 0 0
h̄11/hD 0 h̄12/hD 0

0 0 0 1
h̄21/hD 0 h̄22/hD 0

⎤
⎥⎥⎦

B(ζ) =

⎡
⎢⎢⎣

0 0
h22/hD −h12/hD

0 0
−h12/hD h22/hD

⎤
⎥⎥⎦

Here we consider that the system matrices are consisted
of deterministic elements A0, B0 and uncertain elements
ΔA, ΔB.

A(ξ) = A0 + ΔA (24)

B(ζ) = B0 + ΔB (25)

From A(ξ) and B(ζ), we can obtain deterministic ele-
ments A0 and B0 as (Δθ1, Δθ2) = (0, 0). A1 and B1 are
obtained in the condition of (Δθ1, Δθ2) = (max1, 0) and
A2 and B2 are obtained in the condition of (Δθ1, Δθ2) =
(0, max2). Where maxi is a maximum uncertainty of the

rotational angle in the joint i. The structured uncertain
elements ΔA and ΔB are

ΔA =
p∑

i=1

ξiAi, |ξi| ≤ 1

ΔB =
p∑

j=1

ζjBj , |ζj | ≤ 1

where p = 1, 2. ξi, ζj and Ai, Bj denote the scale and
structure of an uncertainty in the system, respectively.

For the uncertain LTI system (23), we apply the guar-
anteed cost control. The perfoemance index fuction to be
minimized is

J =
∫ ∞

0

(xT(t)Qx(t) + uT(t)Ru(t))dt (26)

The stoctastic algebraic Riccati equation based on the eu-
genvalue upper bound is

AT
0P + PA0 − PB0R

−1BT
0P + Q + UE = O (27)

Upper bound matrix UE is

UE(ΔA(ξ), ΔB(ζ), P, R)

=
p∑

i=1

Li|Λi|LT
i +

p∑
j=1

Mi|Γi|MT
i (28)

where | · | denotes the matrix which has absolute value of
each elements. Li, Mi, Λi and Γi are

LT
i (PAi + AT

i P )Li = Λi (29)

MT
i P (BiR

−1BT
0 + B0R

−1BT
i )PMi = Γi (30)

where Λi and Γi are diagonal matrices which have eigen-
values on the diagonal elements. Li and Mi are orthog-
onal matrices which constructed from the corresponding
orthogonal vectors. From the solution P of Eq. (27), we
obtain the feedback gain matrix F as

F = −R−1BT
0P (31)

The closed-loop system that the feedback gain is F to be
a robust stable system.

III. Numerical example

In this section, we will show the numerical example. Here
we consider that the joint 2 is passive, thus the input matrix
B(ζ) becomes

B(ζ) =

⎡
⎢⎢⎣

0
h22/hD

0
−h12/hD

⎤
⎥⎥⎦
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The weighting matrices are Q = diag(1, 1, 1, 1) and R =
1. The initial value is θ(0) = [ 0.1 0.0 − 0.05 0.0 ].
The uncertainty is Δθ1 = Δθ2 = 0.08. The values of the
physical paratemers are illustrated as in table 2.

Table 2: Parameters
parameter value parameter value

m1 1 m2 1
I1 0.03 I2 0.03
l1 0.3 l2 0.3
lG1 0.15 lG2 0.15
g 9.8

For this system, we design the closed-loop system by
using two method, linear quadratic regulator (LQR) and
guaranteed cost control (GCC). The simulation enviro-
ment is MATLAB and SIMULINK. The LQR problem is
solved by the lqr in the control system toolbox and the
GCC problem is solved by the Euler method algorithm of
our coded m-file. Figure 1 illustrates the trajectory of the
joints angle θ1 and θ2 of both simulation results.
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Fig.1 : Simulation Results

The solution of the algebraic Riccati equation PLQR and
feedback gain FLQR are (ordinary method)

PLQR =

⎡
⎢⎢⎣

309.6216 80.0140 250.8530 45.7467
80.0140 20.8360 65.4442 11.9295

250.8530 65.4442 210.2729 37.8890
45.7467 11.9295 37.8890 6.9139

⎤
⎥⎥⎦

and

FLQR = [−47.5721− 12.6897− 47.3509− 8.7623]

The eigenvalues of the closed-loop system are

(−23.0041,−2.8177,−4.3278± 0.7210i)

The solution of the SARE (27) PGCC and feedback gain
FGCC are (proposed method)

PGCC

=

⎡
⎢⎢⎣

384.4634 99.3605 304.8125 56.5752
99.3605 25.8774 79.3563 14.7504

304.8125 79.3563 250.4025 45.7241
56.5752 14.7504 45.7241 8.4955

⎤
⎥⎥⎦

and

FGCC = [−54.9208− 14.5893− 53.4964− 9.8803]

The eigenvalues of the closed-loop system are

(−23.6828,−2.8569,−4.8189± 0.1002i)

From the figure 1, we can recognize that our proposed
method have designed a robust stable system.

IV. Conclusion

In this paper, we showed the formulation of a uncertain
LTI system of a two link RR manipulator with uncertainty
in the rotational angle of joints. For this system, we ap-
plied the guaranteed cost control to obtain the robust sta-
ble system and showed that the simulational result. Future
study is to apply the observer to this system.
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