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Abstract: When we look at ambiguous figures, perception spontaneously changes from one to the other (per-
ceptual alternation). We measured the brain activity from subjects who observed the Necker cube, one of the
most famous ambiguous figures, using magnetoencephalography (MEG). To identify the brain activity inducing
perceptual alternation, we propose a novel change-point detection method using spectral clustering to recur-
rence plots, and apply to measured data. Synchronized activity changes were detected at parietal channels.
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I Introduction

Ambiguous figures are figures which allow multiple per-
ceptions. When we look at ambiguous figures, perception
spontaneously changes from one to the other. This phenom-
ena is called “perceptual alternation”. Because conscious-
ness alternates without any stimulus changes, perceptual al-
ternations are thought to be related to perceptual conscious-
ness.

When perceptual alternations occur, brain activity
should change in some way. To detect changes of brain
activity, we propose a novel change-point detection method
that divides “recurrence plots”, which visualize time series,
by a graph partitioning method “spectral clustering” and
apply it to signals measured by magnetoencephalography
(MEG). Synchronized changes are detected by the proposed
method in the parietal area.

II Experiment

Subjects observed the Necker cube (fig. 1) which is the
famous ambiguous figure for 60sec, and pressed a button by
the right hand when perception changed. We measured the
brain activity using MEG with 160 channels. The sampling
rate is 1000Hz.

Some MEG signals measured from parietal channels are
shown in fig. 2. Our purpose is to detect changes of brain
activities related to perceptual alternations from these sig-
nals.

Figure 1: Necker cube (top) and its two perceptions (bot-
tom).

III Method

1 Reconstruction of the state space

Generally, we cannot observe all of variables of dynam-
ical systems. Therefore, it is necessary to reconstruct the
state space of the system from observed time series. It is
known that the delay coordinate,

x(t) = (s(t), s(t + τ), . . . , s(t + (m− 1)τ)),

becomes an embedding of the attractor of the dynamical
system with the dimensiond whenm > 2d[1]. Hereτ is
the delay andm is the embedding dimension.
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(a) Left parietal channels.

(b) Right parietal channels.

Figure 2: Measured signals from left parietal channels (a)
and right parietal channels (b). The time when a subject
pressed a button is indicated by black vertical lines. Hori-
zontal axes represent time(ms).

2 Recurrence plots

Recurrence plots[2] visualize time series as two dimen-
sional plots whose horizontal and vertical axes correspond
to time. The recurrence plot of a time series{s(t)} is de-
fined by using the delay coordinates as follows:

R(r)i,j =

{
1, (‖x(i)− x(j)‖ ≤ r),
0, (‖x(i)− x(j)‖ > r),

(1)

wherer is the threshold. Recurrence plots visualize various
features of time series. Examples of recurrence plots are
shown in fig. 3. Fig. 3(a) is the recurrence plot of white
noise. In recurrence plots of stochastic data, points are dis-
tributed randomly. Recurrence plots of periodic data like a
sine wave have lines parallel to the diagonal line (fig. 3(b)).
Recurrence plots of chaotic data are complex but not ran-
dom. Fig. 3(c) is the recurrence plot of the Lorenz equation.

3 Spectral clustering

Spectral clustering partitions a graph to disjoint sets that
minimize a certain cost function. We used “normalized

(a) White noise. (b) Sine wave.

(c) Lorenz equation.

Figure 3: Examples of recurrence plots.

cut”[3] as the cost function. When we partition a graph
(V,E) to subgraphs(A,Ea) and (B,Eb), a normalized
cut is defined as follows:

NCut(A,B) =

∑
u∈A,v∈B W(u, v)∑
u∈A,t∈V W(u, t)

+

∑
u∈A,v∈B W(u, v)∑
u∈B,t∈V W(u, t)

, (2)

whereW is the adjacency matrix whose elementW(u, v)
is the weight of the edge between the vertexu andv. Min-
imizing the normalized cut is equivalent to minimizing the
Rayligh quotient:

yT(D−W)y
yTDy

,

yi =

{
1, (vi ∈ A),
0, (vi ∈ B).

If y is relaxed to one that takes real values, we can minimize
the normalized cut by solving the eigenvalue system:

D− 1
2 (D−W)D− 1

2 z = λz, (3)
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whereD is the diagonal matrix whose diagonal elements
are degrees of vertices andz = D1/2y. Because the matrix
D−1/2(D−W)D−1/2 is the symmetric positive semidef-
inite matrix, the minimum eigenvalue is0 and the corre-
sponding eigenvector is the vector whose all elemtents are
the same value. This corresponds to the trivial partition
A = V,B = φ or A = φ,B = V. Hence, whenz1 is
the eigenvector corresponding to the second smallest eigen-
value,y = D−1/2z1 is the partition minimizing the nor-
malized cut. Ifyi > 0, vi ∈ A, otherwisevi ∈ B.

4 Proposed method

We regard recurrence plotsR as adjacency matricesW,
and apply spectral clustering. Ift and t + 1 are included
in different subgraphs, we detect the timet as the change-
point. Because the order of rows and columns of the ad-
jacency matrix is meaningless, permutation of those have
no effect to the result of spectral clustering. However, rows
and columns in the recurrence plot are in the temporal order,
and hence rows and columns cannot be permutated. There-
fore, application of spectral clustering to recurrence plots
discards the temporal information. To avoid this problem,
we generate a new matrix by adding edges between vertices
i andj when timei andj are sufficiently close.

R̂i,j =

{
1, |i− j| ≤ n,

Ri,j , |i− j| > n.
(4)

We apply spectral clustering to this matrix. This matrix was
used in the study of reconstructing time series from recur-
rence plots[4].

IV Result

We analyzed signals measured from 64 channels located
at left parietal, right parietal, left occipital, and right occip-
ital areas. To avoid artifacts, we extracted 8 components
from 16 signals measured from each area by blind source
separation using ICALAB toolbox[5][6]. We applied the
proposed method to the extracted components. We used
embedding dimensionm = 25, delayτ = 1, andn = 70.
Thresholds of recurrence plots were determined to fix recur-
rence rate (probability that we find a point in a recurrence
plot) to be0.0015. Eigenvectors obtained by the spectral
clustering to matriceŝR are shown in fig. 4.

For example, positive (negative) components in the
eigenvectors can be interpreted as corresponding to one per-
ception, and absolute values of the components can be in-
terpreted as strengths of perception (fig. 5). Then, eigen-
vectors are considered as a sequence of perceptual states.

(a) Left parietal area (b) Right parietal ares

(c) Left occipital area (d) Right occipital area

Figure 4: Eigenvectors obtained by spectral clustering. The
time when a subject pressed a button is indicated by black
vertical lines. Horizontal axes represent time(ms).

Figure 5: The eigenvector and percptual state.

To investigate synchronaization of changes of brain ac-
tivities when perceptual alternations occur, we calculated
cross-correlation functions of these eigenvectors. The peaks
of absolute value represents degree of synchronization and
the delay of peaks represents the delay of changes of brain
activity. Peaks of absolute value and delay are shwon in
fig. 6. In the left and right parietal areas, changes of many
components are highly correlated (fig. 6(a)). These results
imply that changes of brain activities in these area are syn-
chronized. Moreover, right parietal changes procede left
parietal changes(fig. 6(b)).
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V Conclusion

We proposed the novel change-point detection method
in which spectral clustering is applied to recurrence plots.
We applied the proposed method to signals measured by
MEG from subjects observing the Necker cube. Changes
of brain activities related to perceptual alternations are de-
tected by the proposed method. Cross-correlation functions
of eigenvectors obtained by the proposed method indicate
that brain activities were highly correlated in parietal area,
and the right parietal activity precedes the left parietal ac-
itivity. These results imply that changes of brain activities
in the parietal area are related to perceptual alternations and
the right parietal activities change earlier than the left pari-
etal acitivities when perceptual alternations occur.
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(a) Peaks of absolute values of cross-correlation functions

(b) Delay of cross-correlation functions

Figure 6: Peaks of absolute values and delay of cross-
correlated functions calculated from eigenvectors obtained
by spectral clustering.
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