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Abstract: Entropy rate is widely used for analysis of neural data as a measure for randomness of spike trains. In 
addition, its convergent process also contains information on spike trains' structures or patterns. Therefore, it can be 
expected to be a measure for certain aspects of spike trains. In this paper, we investigate applicability of excess entropy 
to neural spike train data by numerical simulations of gamma process. We show that even when the spike train is not so 
long, the estimated excess entropy correctly reflects the shape parameter of the gamma process. 
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I. Introduction 

In neural systems, spikes are thought to be a main 
carrier of information and are necessary to transmits e.g. 
sensory information and motor commands. Information 
representation and transmission in the neural systems 
are crucial issues in neuroscience. For example, in infe-
rior olive (IO) system, prominently low firing rates of 
spikes of IO neurons are supposed to transmit error sig-
nals in motor control and their detailed information cod-
ing is still controversial. In order to quantify the infor-
mation flow in neural system, statistical and information 
theoretical approaches are often used. One of the major 
approaches quantifying information flow is to measure 
the entropy rate. In addition to entropy rate, excess en-
tropy was proposed by Clutchfield and Feldman [1]. 
Excess entropy captures a different element that is re-
lated with structure from entropy rate that expresses 
randomness. It can be a useful tool for analyzing spike 
trains. Excess entropy has been investigated by various 
researchers. Effective measure complexity proposed by 
Grassberger [2] is the same as excess entropy. Predic-
tive information proposed by Bialek et al. [3] is similar 
to the excess entropy. However, estimating excess en-
tropy has some problems. Excess entropy needs infinite 
length sample by definition. In practice, these measures 
need to be estimated from finite length sample. Consi-
dering fluctuation of sample data set, estimated value of 
the excess entropy should be corrected [4]. In the case 
of spike train data observed from neurons, distributions 
of inter-spike intervals (ISI) are known to be well ap-

proximated by the exponential distribution (Poisson 
process) or the gamma distribution [5]. Since the gam-
ma distribution has two parameters: shape and scale 
parameters, ISI distributions of physiological data are 
better approximated by the gamma distribution than the 
exponential distribution. Here, we assume that ISI dis-
tribution follows the gamma distribution and we apply 
information theoretical measures to spike trains gener-
ated from gamma process.  

In this paper, first, we review two information theo-
retic measures: entropy rate and excess entropy. Second, 
we review a correction method for estimated value from 
finite sample. Third, we apply information theoretic 
measures with the correction to spike trains generated 
from the gamma process. Finally, a brief conclusion is 
remarked. 

 

II. Information theoretic measures 

Estimation of excess entropy and entropy rate is 
based on Shannon entropy that intuitively represents 
randomness or uncertainty. Let X be a random variable 
taking value x in a finite set χ. Then Shannon entropy 
of the random variable X is defined by  
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where ),...()( 1 L
L xxpxp =  is joint probability. Then 

uncertainty or average amount of information per sym-
bol is given by 
 

LXHLh L )()( = .                   (3) 
 
The entropy rate h  is defined by )(Lh  in the limit as 
L goes to infinity as follows: 
 

)(lim Lhh
L ∞→

= .                        (4) 

As the length L increases, )(Lh  decreases and ap-
proaches to the entropy rate h (Fig. 1(b)). To quantify 
its convergence, the excess entropy E is defined by 
 

                                  (5) 
 
   The system appears more random than it is when the 
length L is small. Excess entropy tells us how much 
additional information about the configuration is re-
quired to reveal the actual randomness h . 
 
 
 
 
 
 
 
 
 

Fig.1. Image of excess entropy in relation with (a) 
entropy growth and (b) convergence of entropy rate.  

 
Another definition of the excess entropy using mu-

tual information allows us to understand meaning and 
nature of the excess entropy:  
 
                                       (6) 
 
where 123... −−−= XXXX  and 210 XXXX =  are the 
left and the right part of infinite chain of random va-
riables X . This formulation suggests that excess en-
tropy captures how much information on the half part of 
chain affects the other side. That is, excess entropy 
measures memory, predictability or correlation. 
 

III. Estimation from finite length data set 

   To estimate the entropy rate h from a finite sequence 
of length N, we first need to estimate the probabili-

ties ),...( 1 Lxxp from the finite sequence. A naive estima-
tion of ),...( 1 Lxxp  is given by 
 
                                        (7) 
 
where      is the number of occurrences of the 
word       . By substituting Eq. (7) into Eq. (2), we 
obtain an estimated value of the entropy rate as follows: 
  
                                       (8) 
 
   However, this estimation tends to underestimates the 
true value. This can be understood by considering an 
expectation value of )(ˆ LXH  [4]. 
 
   
 
 
      
 
 
                      
 
                                          

Figure 2(a) shows the result of estimation with finite 
length sample of sequence generated by the logistic map. 
It indicates that LhXH L ˆ)(ˆ ≈  in the realm of good 
statistic and that NXH L log)(ˆ ≈  in the realm of bad 
statistics [6]. Accuracy of the estimation depends not 
only on the fluctuation of the sample but also on the 
sample length. 

A correction of the estimated value was given by 
Schürmann and Grassberger [4]: 
 
                                         (10) 
 
where M is the number of distinct words of length L that 
occurs in the given sequence, nj is the number of occur-
rence of the jth word, and )(xψ  is the logarithmic de-
rivative of gamma function.  
   We apply the correction described in Eq. (10) to 
estimate the entropy of the logistic map. Figure 2(b) 
indicates that the estimation of the entropy of the logis-
tic map is significantly improved with this correction. 
However, the entropy rate should be evaluated within 
the realm of good statistics. 
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Fig. 2. Estimated entropy of the logistic map        
(a)  without the correction and (b) with the correc-
tion. 

 

IV. Application to Gamma process 

In this section, we consider applicability of estima-
tion of the excess entropy of spike trains with numerical 
simulations. Spike trains are often assumed to be gener-
ated from a point process. Here, we suppose that  ISIs t 
follow the gamma distribution whose probability densi-
ty function is given by 

  
                     ,             (11) 

 
where κ  is a shape parameter and λ  is a scale pa-
rameter. Figure 3 shows an example of probability den-
sity function of Gamma distribution.  
 
 
 
 
 
 
 
 
 

Fig. 3. Gamma distribution 
 
The excess entropy can capture structural differ-

ences in ISI distribution from complete random process, 
like the Poisson process. This property of the excess 
entropy can be confirmed with the gamma distribution. 
The gamma distribution with κ =1 is equivalent to the 
Poisson distribution. As shown in Fig. 4, the difference 
of the shape parameter κ  from 1 is considered to 
represent differences between the gamma distribution 
and the exponential distribution. Furthermore, the 
excess entropy E takes the minimum value E= 0 when 
κ =1 (Poisson process). This can be understood by con-
sidering discrete time Markov process:  
     
                                       (12) 

The excess entropy of this process is written as 
     

                                       (13) 
 
Since discrete-time Poisson process is a Bernoulli 
process, the excess entropy E takes zero for the gamma 
process with 1=κ . If κ  moves away from 1, spike 
trains have time correlations and the excess entropy 
increases (Fig. 4). 
                          
 
 
 
 

                  
Fig. 4. Dependency of excess entropy on κ  

 
Here, we apply information theoretic measures to 

spike trains generated from the gamma process. As in 
Fig. 5, spike train is discretized into bins and is ana-
lyzed as symbolic sequences of 0’s and 1’s.  

 
 
 
 
 
 
  Fig. 5. Discretization of spike trains 

 
For comparison with numerical estimation of 

excess entropy, we show information gain induced from 
Gamma distribution [7-8]. The information gain is 
Kullback-Leibler (KL) distance between gamma distri-
bution and exponential distribution written as 

),( eg ffKLG =  
                                           
 
 
 
                                     (14)     
where gf  is density function of gamma distribution and 

ef  is density function of exponential distribution. Note 
that we consider continuous distribution for easy calcu-
lation. This quantity also represents structural informa-
tion stored in spike trains. The information gain G  
takes the minimum value (zero) at κ =1 (Fig. 6(a)) and 
this corresponds to characteristics of the excess entropy. 
The estimated excess entropy E  is concave up around 
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κ =1 and has good agreement with characteristics of 
the information gain G. This corresponds to the above 
theoretical consideration and suggests that the excess 
entropy measures structural information (Fig. 6(b,c)). 

Our method is applicable for analyses of practical 
neuronal data. In practical neuronal data, length of data 
is usually limited. As shown in section II, estimation of 
the entropy rate requires much long data; we hence con-
sider estimation from experimentally practicable length 
of data. Figure 6(d) shows the result of estimation of the 
excess entropy with different length of data. As the data 
length gets shorter, the precision of estimation becomes 
worse, but its shape of curve is roughly preserved.  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Fig.6 Estimation of the excess entropy of the gamma 
process and the corresponding information gain. (a) 
Information gain at 500== λκT . (b,c) Result 
of estimation of excess entropy (Sample length:  

ms8100.6 × , bin size: ms10 ) G are fit to the scale of 
E. (d) Result of estimation from finite length sam-
ples. 

 

V. Conclusion 

    We showed that the excess entropy can be used as 
a measure for capturing spike trains’ structure.  

In practice, there seems to be problems since infi-
nite length sample are theoretically needed for the esti-
mation of the excess entropy. Considering convergence, 
excess entropy needs much long sample. However, nu-
merical estimation shows that we can detect structural 
difference from short sample to some extent.  

Theoretically, excess entropy is an effective measure 
for spike trains like Gamma process, since spike trains 
have correlation or structure inside. Spike trains have 
more than randomness. Excess entropy captures spike 
trains’ structure.  

Also, excess entropy is a measure similar to infor-
mation gain. Excess entropy directly uses spike trains 
and preserves structure. On the other hand, the approach 
to spike trains by using information gain cannot detect 
structural elements beyond ISI distribution. Excess en-
tropy can detect higher order structure above ISI distri-
bution such as temporal coding. Thus, excess entropy 
can be expected to be an effective measure for spike 
trains. 
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