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Abstract: A silicon neuron is an electrical circuit that replicates the electrophysiological phenomena of biological 

neural system. Despite most of conventional spiking silicon neuron models are designed for analog circuit technology, 

we proposed, in the previous study, a digital spiking silicon neuron (DSSN), which is optimally designed for digital 

circuit technology. The DSSN model was based on a mathematical-modeling point of view and successfully produced 

three types of neural excitability with fewer hardware resources. In addition to the DSSN, we propose here a digital 

silicon synapse that mimics the elemental features of a chemical synapse and underlies the construction of a silicon 

neural network. We built a fully-connected digital silicon neural network with the digital silicon synapses and 

demonstrate synchronization and phase-locking in neural activities in a hardware description language (HDL) 

simulation. 
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I. INTRODUCTION 

The silicon neural network is an electrical circuit 
that mimics electrophysiological properties and 
functions of biological neural systems. Such neural 
system attracts much attention due to not only clinical 
objectives but also engineering purposes, and their 
parallel structure and robustness might bring high 
scalability and adaptability in information processing. 
Silicon neural networks with these features are 
applicable to, for example, a real-time simulator of 
complicated nerve systems [1], a hybrid system of 
biological and silicon neurons for the purpose of 
verification of a neuron model [2], and brain machine 
interfaces. 

In the present study, we focused on designing the 
silicon spiking neural network with DSSNs and the 
silicon synapses. Spikes (or action potentials) are 
thought to be a main carrier of information in neural 
systems and are generated when a neuron receives 
inputs from other neurons and its membrane potential 
reaches the threshold. Once a spike is generated, the 
spike travels to other neurons and yields current on their 
membrane via excitatory or inhibitory synapses. These 
synaptic interactions lead variety of neural dynamics. 
For example, in mutually connected neurons with 
excitatory synapses, their neural activities tend to be 
synchronized. Synchronized neural activities are widely 
observed in biological systems and are supposed to play 
crucial roles e.g. in cardiac pacemaker cells [3] and in 
motor controls [4]. Those dynamical features of spiking 
neural network might bring variety of engineering 
applications. 

In designing the silicon neural network, selection of 
a proper model is a key issue. One possible approach of 
neural modeling is to focus on the detail of neurons’ 
structure, for example, multi-compartmental models of 

neurons based on dynamics of various kinds of ionic 
channels and dendritic tree structure. Such 
physiologically realistic neuron models might produce 
the detail of the neural activity. However, 
implementations of those models require vast hardware 
and power resources, and when trying to operate the 
neural system it can be hard to analyze their behaviors. 
Another approach is to simplify the neuron model and 
to optimize them to a target device maintaining the core 
features of activity of the original neuron. The DSSN 
model proposed in our previous study is based on this 
requirement and on mathematical modeling point of 
view. The DSSN model exhibits rich dynamical 
behavior and allows us to realize a silicon neural 
network with fewer hardware resources. 

In this paper, we report a digital synaptic circuit 
with same design principal as that of the DSSN model 
and a digital silicon neural network with the synaptic 
circuit. In the following sections, dynamical properties 
of the DSSN are briefly reviewed. Then, models of 
synaptic circuits and the neural network are explained. 
In the result section, phase-locking phenomena of neural 
activities in the network are demonstrated. In the final 
section, conclusions, discussions for the result, and our 
future works are remarked. 

 

II. MODEL AND METHOD 

In this study, we used the DSSN model as an 
element of the neural network, which is optimally 
designed for digital circuit technology [ 5 ] and is 
described by the following equations: 
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where variables v and n respectively represent the 
membrane potential and an activity of slow ionic 
channels. Parameters ax, bx, cx, kx, px, qx (for x=n and p), 
and r determine dynamical properties of the neuron. Φ 

and τ are parameters that specify the time constant. I0 is 
a constant bias current. Istim is the sum of currents given 
by other neurons. See reference [5] for the parameter 
values. 

This neuron model is designed so that they can be 
implemented on limited resource of digital arithmetic 
circuits while maintaining the qualitative structure of 
their dynamical system. The structure of the dynamical 
system can be depicted on the phase-plane plots and the 
bifurcation diagrams (Fig. 1(a)-(c)). Those plots show 
structures of dynamics in two different types of neuron 
models: Class I and II excitability. This classification is 
based on difference on the frequency-input relationship 
of a neuron as depicted in Fig. 1(d). A neuron with Class I 
excitability begins to fire gradually at arbitrarily low 
frequency as the sustained stimulus current is increased. 
In Class II excitability, on the other hand, a neuron starts 
to fire at non-zero frequency. Differences of those 
excitabilities can be clear with the phase plane and the 
bifurcation diagrams. In the former, the structure of the 
dynamical systems are characterized with nullclines, 
which are sets of points satisfying 0=v&  or 0=n& , 
called the v- and the n-nullclines respectively. 
Intersections of these nullclines represent equilibriums 
whose stabilities are determined by the eigen value 
analyses. As the magnitude of the input increases, the 
v-nullcline moves upward in Fig. 1(a) and the position 
and presence of intersections can be changed as in 
Fig. 1(b) and (c). In the case of a Class I neuron, the 
qualitative change in the dynamical system is induced 
by a saddle-node on invariant circle bifurcation. In a 
Class II neuron, this is by the Hopf bifurcation. 

In order to construct a silicon neural network with 
DSSNs, we have developed a digital silicon synapse. 
We used a synaptic model which is analogue to 
elemental features of activities in biological synapses. 
The activity of the model synapse is triggered by an 
arrival of a spike and decays exponentially toward zero 
[7]. The synaptic model used in this paper is described 
by 
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where s is a synaptic activity, parameter speak = 2 is the 
peak value of synaptic activity, τs= 3.2ms is the decay 

   

Fig. 1. Analyses of Class I and II neurons in our DSSN 
model. (a) The v-n phase plane. (b), (c) Bifurcation 
diagrams of Class I and II neurons, respectively. (d) 
Frequency-input relationship of Class I and II neurons. 
These figures are cited from [5][6]. 

 

time constant of synaptic activity, ts is the time when the 
presynaptic neuron emits a spike. δ is Dirac’s delta 
function. The second term in the right-hand side of  
Eq. (5) represents reset of synaptic activity. 

Although, a single neuron sends spikes to multiple 
neurons and generates synaptic currents on their 
membranes, we assumed that the time series of the 
synaptic currents are common among these synapses 
except for their amplitude. In other words, the synaptic 
currents are given by a product of the synaptic activity 
and a weight value that corresponds to efficiency of 
each synapse (Fig. 2).  

Figure 3 shows the block diagram of the single 
spiking neuron circuit and the corresponding synaptic 
circuit. Three variables in this model, v, n, and s are 
stored in register circuits (boxes of the right side in 
Fig. 3) and are updated with difference equations that 
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are derived from Eqs. (1), (2), and (5). Differences are 
calculated according to the stored values of the variables 
and the external input (boxes of the left side in Fig. 3) 
and these differences are summed with the current states 
of variables in adders (middle in Fig. 3). The summed 
values are read out by the variable registers 
simultaneously at the rising edge of the clock signal. 
The variable that represents the synaptic activity is reset 
to their peak value when the sign bit of variable v is 
switched from 1 to 0, namely, when the membrane 
potential go through the threshold v=0 from below to 
above. 

As to the network, we constructed a fully-connected 
network in which all neurons have connections for all 
other neurons including themselves. In this study, we 
built a neural network that consists of three silicon 
neurons connected each other via the silicon synapses of 
unique weight value w. 

In this digital silicon neural network, the variables in 
above equations are represented by two’s complement 
representation and the size of the circuit is crucially 
depended on the selection of their bit width. We tried 
several values for the bit width and found that 19 bit is 
sufficient to attain accurate integration to operate the 
silicon neural network appropriately. Furthermore, 
several parameter values in above models 

 
Fig. 2. Schematics of synaptic activity. v represents the 
membrane potential of neuron 1. s represents a synaptic 
activity. w1 and w2 represent weights of synapses from 
neuron 1 to neuron 2, and to neuron 3, respectively. 

 

Fig. 3. Block diagram of a single neuron circuit and a 
synaptic circuit. Istim is the external input. Vout is the 
output of membrane potential. Sout is the synaptic 
activity. 

are selected from m th power of two (m is supposed to 
be an integer number) so that the multiplier circuits can 
be replaced by bit shifters. This replacement leads 
remarkable reduction in hardware resource requirement 
and less latency. In the calculating process of division of 
τ, bit shift operation is also utilized. We simulated this 
spiking silicon neural network with a HDL simulator 
software (Modelsim Xilinx Edition-III). In the 
following HDL simulation, we set the bit width of 
variables to be 19 bits. 
 

III. RESULT 

We confirmed that the individual spiking silicon 
neurons show both of Class I and II excitabilities in 
HDL simulation (Fig. 4). In the Class I mode, our 
silicon neuron begins to fire at very low frequency and 
their frequency is gradually increased by an increase in 
the input magnitude. In the case of the Class II mode, as 
the input magnitude increased, their frequency suddenly 
increases just above a threshold and then they increases 
relatively slowly in the above threshold. In relation to 
synaptic activity, as the membrane potential exceeds the 
threshold, synaptic activities are triggered and decayed 
exponentially.  

 
Fig. 4. HDL simulation of our silicon neuron circuit. 
The vertical axes represent the magnitude of v and s, 
and these figures show time series from 0 to 80ms. A 
synaptic activity is indicated by thin curve. The 
membrane potential is represented by bold curves. The 
left column is Class I neuron. The right one is Class II 
neuron. In sequence from top figures, Istim= −0.25, 
0.0156, 0.5, 1. Note that in this simulation, the 
frequencies of v at the values of each Istim about both 
Class I and II are different from those of Fig. 1(d). 
However, the qualitative characteristic of Class I and II 
corresponds to that of Fig. 1(d). 
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Fig. 5. Responses on the digital silicon neural network. 
The vertical axes represent the magnitude of v. (a) An 
anti-phase locking. (b) Synchronization. (c) Response 
without interactions. 

 

As shown in Fig. 5, the spiking silicon neural 
network shows synchronization and phase-locking 
phenomena in their activity. We performed simulation 
for the cases of the inhibitory, excitatory, and neutral 
synaptic connections. In this simulation, the Class I 
neurons are implemented. In the model, interaction with 
inhibitory synapses leads an anti-phase locking (Fig. 5(a)) 
and excitatory interactions bring the synchronized 
activities (Fig. 5(b)). These well-ordered collective 
behaviors cannot be observed without any interactions 
(Fig. 5(c)). 

 

IV. DISCUSSION AND CONCLUSION 

In this paper, we proposed a digital silicon neural 
network and confirmed, in HDL simulations, that 
individual neurons show two different classes of 
excitability and their activities trigger synaptic activities, 
and that the fully-connected neural network shows 
synchronization and phase-locking phenomena due to 
the interaction via the synaptic connection.  

In our silicon neural network, several spatio-
temporal patterns are realized by changing the 
connectivity among the network. Application of this 
phenomenon involves, for example, a control of multi-

channel actuators. As the future works, we will 
implement the silicon neural network in a field 
programmable gate array (FPGA) and evaluate their 
performances in such applications. Furthermore, to 
implement learning ability or flexible plastic features in 
the silicon neural network, a synaptic plasticity circuit is 
required. We will develop the plasticity circuit based on 
the same design principal as used in the present research. 
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