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Abstract: This paper introduces a quasi-ARX neural network and discusses its application to adaptive control of nonlinear
systems. A switching mechanism is employed to improve the performance of control system. An adaptive switching
control of nonlinear system is established and some stability analysis of control system is shown. Simulations are given
to show the effectiveness of the proposed method both on stability and accuracy.
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I. INTRODUCTION

Neural networks have been used to identify and con-
trol nonlinear dynamical systems because of its ability to
approximate arbitrary map to any desired accuracy[1-4].
Some researchers have used neural networks directly to
identify and control nonlinear systems[2, 5]. Many non-
linear ARX models based directly on neural networks
also have been proposed. However, from a user’s point
of view, there are three major criticisms on those neural
network models. One is that their parameters do not have
useful interpretations. The second is that they do not have
a friendly interface for controller design and system anal-
ysis[4]. The third one is that initialization and overfitting
will lead to instability.

To solve these criticisms, a quasi-ARX neural net-
work model has been proposed which embodied a macro-
model part and a kernel part[3, 4]. The macro-model
part is a user-friendly interface constructed using al-
ready known knowledge and the characteristic of network
structure. In this paper, we will limit our discussion to a
quasi-ARX approach. The linear ARX model has a var-
ious useful linearity properties which will solve the for-
mer criticisms. The kernel part is an ordinary neural net-
work, which is used to parameterize the coefficients of
macro-model. The quasi-ARX neural network is differ-
ent from a nonlinear ARX model based directly on neu-
ral networks because of the linear characteristics and it
also can be used to identify and control nonlinear sys-
tems accurately because of the nonlinear characteristics.
In Ref.[4], we proposed an off-line control scheme based
on the quasi-ARX neural network. We will discuss the
adaptive control of nonlinear system in this paper.

Quasi-ARX neural network has two parts: the linear
part and the nonlinear part. If the linear part would be
used to ensure the nonlinear control stability and the non-
linear part would be utilized to improve the control ac-
curacy, both stability and universal approximation capa-
bility will be realized. Motivated by the discussion, a
switching law is established into the model based on the
characteristic of quasi-ARX neural network structure in
this paper. An adaptive switching control law is proposed

for nonlinear dynamical systems and control system sta-
bility is proved.

The paper is organized as follows: In section 2, the
considered system is given. In section 3, the quasi- ARX
neural network model is introduced. Section 4 gives
the parameters identification methods and the switching
mechanism. Section 5 describes adaptive control system
and analyzes the stability. Then, numerical simulations
are carried out to show the effectiveness of the proposed
modeling in Section 6. At last Section 7 gives some con-
clusions.

II. PROBLEM DESCRIPTION

Consider a single-input-single-output (SISO) black-
box nonlinear system

y(t) = g(ϕ(t)) + v(t), (1)

whereϕ(t) = [y(t−1), ...y(t−n), u(t−d), ..., u(t−m−

d + 1)]T . y(t) denotes the output at timet (t = 1, 2, ...),
u(t) the input,d the known integer time delay (Let d=1 in
this paper, and other conditions can be got by the similar
method.),ϕ(t) the regression vector, andv(t) the system
disturbance.g(·) is a nonlinear function.

Assumption 1 (i) g(·) is a continuous function, and at
ϕ(t) = 0 it is C∞ continuous. (ii) the system is con-
trollable, where a reasonable unknown controller may be
expressed byu(t) = ρ(ξ(t)), whereξ(t) = [y(t) ... y(t−
n) u(t−1) ... u(t−m) y∗(t+1) ... y∗(t+1− l)]T (y∗(t)
denotes reference output). (iii) the system has a globally
uniformly asymptotically stable zero dynamics.

III. QUASI-ARX NEURAL NETWORK
MODEL

1. Regression Form Representation
Through Taylor expansion of functiong(·) around the

regionϕ(t) = 0

y(t) = g(0)+g′(0)ϕ(t)+
1
2
ϕT (t)g′′(0)ϕ(t)+ ... +v(t).(2)

Let

θ(ϕ(t)) =
(

g′(0) +
1
2
ϕT (t)g′′(0) + · · ·

)T
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= [a1,t ... an,t b0,t ... bm−1,t]T

where the coefficientsai,t = ai(ϕ(t)) and bi,t =
bi(ϕ(t)) are nonlinear functions ofϕ(t). g(0)= 0 is as-
sumed for simplicity. A regression form of the system
(1) is described by (3):

y(t) = ϕT (t)θ(ϕ(t)) + v(t). (3)

Now, two polynomialsA(q−1, ϕ(t)) andB(q−1, ϕ(t))
based on the coefficientsai,t andbi,t are defined by

A(q−1, ϕ(t)) = 1 − a1,tq
−1

− . . . − an,tq
−n

B(q−1, ϕ(t)) = b0,t + . . . + bm−1,tq
−m+1

whereq−1 is the backward shift operator, e.g.q−1u(t) =
u(t − 1).

A similar-linear ARX model is developed

A(q−1, ϕ(t))y(t) = B(q−1, ϕ(t))u(t − 1) + v(t). (4)

2. Weighted One-Step-Ahead Predicate
The theorem for a d-step prediction has been proved in

Ref.[4]. When d=1, one-step predictor is given :

ŷ(t + 1) = α(q−1, φ(t))y(t) + β(q−1, φ(t))u(t) (5)

whereφ(t) = [y(t), ...y(t − n + 1), u(t), ...u(t − m +
1)]T . α(q−1, φ(t)) = α0,t + . . . + αn−1,tq

−n−1 and
β(q−1, φ(t)) = β0,t + . . . + βm−1,tq

−m+1.

The prediction model (5) is a general one that is non-
linear in the variableu(t), because the coefficientαi,t and
βi,t are function ofφ(t). With Assumption 1 (ii), the un-
knownρ(·) replaces variableu(t) in the coefficientsai,t

andbi,t

αi,t = αi(x(ϕ(t))) ≃ αi(φρ(t))△

= αi(ξ(t))

βi,t = βi(x(ϕ(t))) ≃ βi(φρ(t))△

= βi(ξ(t))

whereφρ(t) is φ(t) whose elementu(t) is replaced by
ρ(ξ(t)), that is,φρ(t) = [y(t) ... y(t−n+1) ρ(ξ(t)) u(t−
1) ... u(t − m + 1)]T . ξ(t) has a form of

ξ(t) = [y(t) ... y(t − n + 1) u(t − 1) ...

u(t − m + 1) y∗(t + 1)].

We have a predictor expressed by:

ŷ(t + 1) = α(q−1, ξ(t))y(t) + β(q−1, ξ(t))u(t) (6)

We finally express the predictor by

ŷ(t + 1) = ΨT Θξ (7)

whereΨ(t) = [y(t) ... y(t−n+1) u(t) ... u(t−m+1)].

3. Incorporation of Neural Networks
ParameterizingΘξ with a MIMO neural network, the

quasi-ARX prediction model is expressed by

ŷ(t + 1) = Ψ(t)T (t)N (ξ(t), Ω) (8)

whereN (·, ·) is a 3-layer neural network withn input
nodes,M sigmoid hidden nodes andn + 1 linear output
nodes1.
1The number of input node isn = dim(ξ(t)) = ny + nu, the number
of output node is equal todim(Φ(t)) = n + 1

Let us express the 3-layer neural network by

N (ξ(t), Ω) = W2Γ(W1ξ(t) + B) + Θ (9)

whereΩ = {W1, W2, B, Θ}, W1 ∈ R

M×n, W2 ∈

R

(n+1)×M are the weight matrices of the first and second
layers,B ∈ R

M×1 is the bias vector of hidden nodes,
Θ2 ∈ R

(n+1)×1 is the bias vector of output nodes, andΓ
is the diagonal nonlinear operator with identical sigmoid
elementsσ (i.e., σ(x) = 1−e−x

1+e−x ). Then the quasi-ARX
prediction model (9) is expressed in a form of

ŷ(t + 1) = ΨT (t)Θ + ΨT (t) · W2Γ(W1ξ(t) + B). (10)

The quasi-ARX neural networks prediction model con-
sists of two parts: the first term of the right side of (10)
is a linear ARX prediction model part, while the second
term is a nonlinear part. Therefore, in the quasi-ARX
prediction model the bias of output nodesΘ describes a
linear approximation of the object system.

Assumption 2 (i) The linear parametersΘ lies in
a compact regionB. (ii) The nonlinear termΨT (t) ·

W2Γ(W1ξ(t) + B) is globally bounded, i.e.ΨT (t) ·

W2Γ(W1ξ(t) + B) ≤ ∆.

IV. PARAMETERS ESTIMATION AND
SWITCHING CRITERION FUNCTION

1. Parameter Estimation

For the quasi-ARX model, the linear part parameterΘ
is updated as:

Θ̂(t + 1) = Θ̂(t) +
a(t)Ψ(t)e1(t)
1 + Ψ(t)T Ψ(t)

(11)

a(t) =
{

1 if |e1(t)| > 2∆
0 otherwise

(12)

whereε is a small positive constant.e1(t) = y(t + 1) −
Ψ(t)T Θ̂(t).

For the quasi-ARX model, the nonlinear part er-
ror: e2(t) = y(t + 1) − Ψ(t)T Θ̂(t) − ΨT (t) ·

W2(t)Γ(W1(t)ξ(t) + B(t)). is chosen
The parametersΩ of the part combined with neural

networks is adjusted by BP algorithm.

2. Switching Criterion Function

When the overfitting in the neural network part hap-
pens, nonlinear part will be turned off.

Now give the switching criterion function as in [7]:

Ji(t)=
(t)∑
l=k

ai(l)(‖ ei(l) ‖2
−4∆2)

2(1 + ai(l)Ψ(l − k)T Pi(l − k − 1)Ψ(l − k))

+ c ∗

t∑
l=t−N+1

(1 − ai(l) ‖ ei(l) ‖2) (13)

where N is an integer andc ≥ 0 is a predefined constant.
By comparingJ1(t) andJ2(t), decides when the non-

linear part is abandoned. IfJ1(t) > J2(t) the nonlinear
part is chosen, else only use linear part to identify.
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Fig. 1 A Switching control to nonlinear system based on linear model

and quasi-ARX model

VI. CONTROLLER DESIGN AND
STABILITY ANALYSIS

Consider a minimum variance control with the crite-
rion function as follows:

M(t + 1) =
[
1
2
(y(t + 1) − y∗(t + 1))2 +

λ

2
u(t)2

]
(14)

whereλ is weighting factor for the control input.
The controller can obtain by solving:

∂M(t + 1)
∂u(t)

= 0 (15)

Therefore, the proposed models can derive controller
by solving (15):

u(t) =
β0,t

β2
0,t + λ

((β0,t − β(q−1, ξ(t))q)u(t − 1)

+y∗(t + 1) − α(q−1, ξ(t))y(t)). (16)

where

[β(q−1, ξ(t)); α(q−1, ξ(t))] = (17){
Θ(t) if J1(t) < J2(t)

W2(t)Γ(W1(t)ξ(t) + B(t)) + Θ(t)otherwise

The proposed controller has three distinctive features:
(1) it is linear for the variables synthesized in control
systems;
(2) its parameters have explicit meanings;
(3) it is one controller which have a switching algorithm.

Figure 1 shows the controller for unknown nonlinear
systems. We can see that the identified model and con-
troller model share their parameters.

Theorem For the system (1) with adaptive controller
(13), all the input and output signals in the closed-loop
system are bounded. Moreover, the tracking error of the
system can converge on zero when a properly neural net-
work is determined.

Proof: (i) SubtractingΘ0 from both sides of (11), and
gives:

Θ̃(t + 1)=Θ̃(t)

−

a(t)Ψ(t)(Ψ(t)T Θ̃(t) − ω(t))
1 + Ψ(t)T Ψ(t)

(18)

whereω(t) = y(t + 1) − Ψ(t)T Θ1(t).
Consider the following functional:

V (t) = ‖Θ̃(t)‖2. (19)

Then, noting that a(t)=0 or 1, and combined with (11)
and (12), we can get as in [6]:

V (t + 1)

≤ V (t) +
2a(t)∆2

1 + Ψ(t)T Ψ(t)
−

1
2

a1(t)e1(t)2

1 + Ψ(t)T Ψ(t)
. (20)

In view of (20), {V(t)} is a nonincreasing sequence
bounded below by zero. Moreover,

lim
N→∞

N∑
t=1

a(t)(e1(t)2 − 4∆)
2(1 + Ψ(t)T Ψ(t))

< ∞, (21)

and

lim
N→∞

a(t)(e1(t)2 − 4∆)
2(1 + Ψ(t)T Ψ(t))

→ 0. (22)

Along with (iii) of Assumptions 1 similar to Ref.[7],
e1(t) is bounded.

By (13) and (22), the second term ofJ1(t) is always
bounded.J2(t) has two cases:

(i) J2(t) is bounded. so the model errore(t) is
bounded and satisfies (22).

(ii) J2(t) is unbounded. Since (1)J1(t) is bounded. So
there exists a constantt0 such thatJ1(t) < J2(t), ∀t >

t0. The model also has bounded errore(t).
From above inequalities, the input and output of the

closed-loop switching control system are bounded.
The linear model is always bounded. If a proper non-

linear model is chosen and the accurate parameters is
adjusted, the nonlinear model errore2(t) can converge
on zero. It also exists a constantT0 satisfiesJ2(t) <

J1(t), ∀t > T0. Then the tracking error of model can
converge on zero.

VII. CONTROL SIMULATIONS

Now consider a nonlinear system:

y(t) =
exp(−y2(t − 2)) ∗ y(t − 1)
1 + u2(t − 3) + y2(t − 2)

+
(0.5 ∗ (u2(t − 2) + y2(t − 3))) ∗ y(t − 2)

1 + u2(t − 2) + y2(t − 1)

+
sin(u(t − 1) ∗ y(t − 3)) ∗ y(t − 3)

1 + u2(t − 1) + y2(t − 3)

+
sin(u(t − 1) ∗ y(t − 2)) ∗ y(t − 4)

1 + u2(t − 2) + y2(t − 2)
+ u(t − 1) (23)

The desired output in this example is a piecewise func-
tion.

y∗(t) =




0.4493y∗(t − 1) + 0.57r(t − 1)
t ∈ [1, 100] ∪ [151, 200]

0.7sign(0.4493y∗(t − 1)
+0.57r(t − 1))

t ∈ [101, 150]

(24)
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Fig. 2 switching control results of example 1

wherer(t) = 1.2 ∗ sin(2πt/25). At the nonlinear part,
a neural network with one hidden layer and 20 hidden
nodes as in Ref.[4] is used and other parameters satisfy
m=4, n=3, c=1.2 and N=3. The quasi-ARX model can
be trained off-line by the hierarchical training algorithm
as in Ref.[4]. This model is used on-line as an identifier
which is adjusted by BP algorithm. The linear part, m=4,
n=3 which is adopted on-line by above section mentioned
algorithm.

Figure 2 gives the results of example. In Fig.2(1),
the red line is desired output, blue line proposed method
control output and green pine linear control output. The
Fig.2(2) gives the control input where blue and green de-
notes the proposed method control and linear control in-
put. The errors are shown in Fig.2(3). The mean of linear
control is -0.0364 and the variance is 0.2930. The mean
of the proposed method control is 0.0035 and the vari-
ance is 0.0053. Therefore, our method is better than lin-
ear control. The switching sequence is presented which
1 is model with nonlinear part and 0 is model without
nonlinear part in Fig.2(4).

VIII. CONCLUSION

In this paper, a new framework is established to adap-
tive control nonlinear system based on quasi-ARX neu-
ral network, and a switching algorithm is designed. Dif-
ferent from some relative researches which established
more than two prediction models and made switching
among so many corresponding controllers[7,8], the pro-
posed method is simpler and control-easier because of the
compact and efficient structure of control system. Simu-

lations are given to show the effectiveness of the proposed
method both on stability and accuracy.
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