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Abstract : In distributed sensor network such as distributed AMR system, accurate time synchronization is necessary to 
assure the concurrence of event timing for measured data. There are NTP(Network Time Protocol) and SNTP (Simple 
Network Time Protocol), RBS (Reference Broadcast Synchronization), TPSN (Time synchronization Protocol for 
Sensor Networks) in time synchronization for distributed network systems. 
In this paper, we suggested improved SNTP using precise meta data exchange and agile interrupt handling techniques 

and showed that our method has accuracy of sub-millisecond compared to conventional SNTP with accuracy of few 
second from the time synchronization performance analysis results. 
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I. INTRODUCTION 
As in distributed sensor network such as distributed 

AMR systems, accurate time synchronization is 
necessary to assure the concurrence of event timing for 
measured data. 

There are two main purposes of time synchronization. 
The first purpose is to ensure that events occur on time, 

in the correct sequence. Therefore, synchronization is 
necessary to start scheduled events and to register their 
occurrence. Many activities in commerce, banking, 
financial, business, transport, medicine, services, as a 
few examples, may need to guarantee that tasks are 
timely scheduled, and concurrent and cooperating 
processes interoperate correctly. The second purpose is 
tracing, that is, retrieving information concerning past 
events, whenever is necessary, regarding when the 
events occurred and in what sequence. This task is 
possible only if accurate timestamps of each event are 
available. 
In this paper, we suggested improved SNTP using 

precise meta data exchange and agile interrupt handling 
techniques and showed that our method has accuracy of 
sub- millisecond compared to conventional SNTP with 
accuracy of few second from the time synchronization 
performance analysis results. 

II. OVERVIEW[2] 
All network time synchronization methods rely on 

some sort of message exchange between nodes. 

Non-determinism in the network dynamics makes the 
synchronization task challenging in many systems. 

When a node in the network generates a timestamp to 
send to another node for synchronization, the packet 
carrying the timestamp will face a variable amount of 

delay until it reaches and is decoded at its intended 
receiver. This delay prevents the receiver from exactly 
comparing the local clocks of the two nodes and 
accurately synchronizing to the sender node. We can 
basically decompose the sources of error in network 
time synchronization methods into basic components: 

 Send Time: This is the time spent to construct a 
message at the sender. It includes the overhead of 
operating system, and the time to transfer the message 
to the network interface for transmission. 

 Access Time: Each packet faces some delay at the 
MAC layer before actual transmission. The sources of 
this delay depend on the MAC scheme used, but some 
typical reasons for delay are waiting for the channel to 
be idle or waiting for the TDMA slot for transmission. 

 Propagation Time: This is the time spent in 
propagation of the message between the network 
interfaces of the sender and the receiver. 

 Receive Time: This is the time needed for the 
network interface of the receiver to receive the message 
and transfer it to the host. 

 
 

  
 
 
 

[Fig. 1]. Message delivery delay 
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a. The Need For Synchronization in Sensor 
Networks 

There are several reasons for addressing the 
synchronization problem in sensor networks. 

 First, sensor nodes need to coordinate their operations 
and collaborate to achieve a complex sensing task. Data 
fusion is an example of such coordination in which data 
collected at different nodes are aggregated into a 
meaningful result. For example, in a vehicle tracking 
application, sensor nodes report the location and time 
that they sense the vehicle to a sink node which in turn 
combines these information to estimate the location and 
velocity of the vehicle. Clearly, if the sensor nodes lack 
a common timescale (i.e., they are not synchronized) the 
estimate will be inaccurate. 

Second, synchronization can be used by power saving 
schemes to increase network lifetime. For example, 
sensors may sleep at appropriate times, and wake up 
when necessary. When using power-saving modes, the 
nodes should sleep and wake-up at coordinated times, 
such that the radio receiver of a node is not turned off 
when there is some data directed to it. This requires a 
precise timing between sensor nodes. 

b. Reference Broadcast Synchronization (RBS) 

Reference Broadcast Synchronization (RBS) [3], 
where their simple yet novel idea is to use a "third 
party" for synchronization, their scheme synchronizes a 
set of receivers with one another.    

In RBS scheme, nodes send reference beacons to their 
neighbors. A reference beacon does not include a 
timestamp, but instead, its time of arrival is used by 
receiving nodes as a reference point for comparing 
clocks. 

 

 
 

[Fig. 2] Comparison of conventional method to RBS 

The authors argue that, by removing the sender's non-
determinism from the critical path [Fig. 2], RBS 
achieves much better precision compared to traditional 
synchronization methods that use two-way message 
exchanges between synchronizing nodes. As the 
sender's non-determinism has no effect on RBS 
precision, the only sources of error can be the non-
determinism in propagation time and receive time. The 
authors claim that a single broadcast will propagate to 
all receivers at essentially the same time, and hence the 
propagation error is negligible. This is especially true 

when the radio ranges are relatively small, as is the case 
for sensor networks. So they only account for the 
receive time errors when analyzing accuracy of their 
model. 

In the simplest form of RBS, a node broadcasts a 
single pulse to two receivers. The receivers, upon 
receiving the pulse, exchange their receiving times of 
the pulse, and try to estimate their relative phase offsets. 
This basic RBS scheme can be extended in two ways:  

1) allowing synchronization between n receivers by a 
single pulse, where n may be larger than two,  

2) increasing the number of reference pulses to achieve 
higher precision. The authors show by simulation that 
30 reference broadcasts (for a single synchronization in 
time) can improve the precision from 11 sμ  to 1.6 sμ   

c. Timing-Sync Protocol for Sensor Networks 
(TPSN) 

Timing-Sync Protocol for Sensor Networks (TPSN) 
[4] works in two phases: level discovery phase" and 
synchronization phase". The aim of the first phase is to 
create a hierarchical topology in the network, where 
each node is assigned a level. Only one node is assigned 
level 0, called the root node. In the second phase, a node 
of level i synchronizes to a node of level 1−i . At the 
end of the synchronization phase, all nodes are 
synchronized to the root node and the network-wide 
synchronization is achieved. 

Consider a two-way message exchange between nodes 
A and B as shown in [Fig.3]. Node A initiates the 
synchronization by sending a synchronization pulse 
packet at 1T (according to its local clock). This packet 
includes A's level number, and the value 1T . 

B receives this packet (according to its local clock) at 
dTT +Δ+= 12 , where Δ  is the relative clock drift 

between the nodes, and d is the propagation delay of the 
pulse. B responds at time 3T  with an acknowledge-
ment packet, which includes the level number of B and 
the values 1T , 2T , and 3T . Then, node A can 
calculate the clock drift and propagation delay as below, 
and synchronize itself to B. 

 
 
 
 
 
 
 
 
 
 
[Fig. 3] Two way message exchange between a pair of 

nodes 
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The synchronization phase is initiated by the root 
node's time sync packet. On receiving this packet, level 
1 nodes initiate a two-way message exchange with the 
root. Before initiating the message exchange, each node 
waits for some random time, in order to minimize 
collisions on the wireless channel. Once they get back a 
reply from the root node, they adjust their clocks to the 
root node. Level 2 nodes, overhearing some level 1 
node's communication with the root, initiate a two-way 
message exchange with a level 1 node, again after 
waiting for some random time to ensure that level 1 
nodes have completed their synchronization. This 
procedure eventually gets all nodes synchronized to the 
root node. TPSN is implemented on Berkeley's Mica 
architecture, and makes use of time-stamping packets at 
the MAC layer in order to reduce uncertainty at sender. 
Ganeriwal et.al. claim that TPSN achieves two times 
better precision than RBS. They state that the precision 
of 6.5 sμ . 

d. Requirements on the Synchronization Schemes for 
Sensor Networks 

There are trade off between the requirements of an 
efficient synchronization solution (e.g., precision versus 
energy efficiency), thus a single scheme may not satisfy 
them altogether. 

 Energy Efficiency : As with all of the protocols 
designed for sensor networks, synchronization schemes 
should take into account the limited energy resources 
contained in sensor nodes. 

 Scalability - Most sensor network applications need 
deployment of a large number of sensor nodes. A 
synchronization scheme should scale well with 
increasing number of nodes and/or high density in the 
network. 

 Precision - The need for precision, or accuracy, may 
vary significantly depending on the specific application 
and the purpose of synchronization. For some 
applications, even a simple ordering of events and 
messages may suffice whereas for some others, the 
requirement for synchronization accuracy may be on the 
order of a few sμ . 

 Cost and Size - Wireless sensor nodes are very small 
and inexpensive devices. Therefore, as noted earlier, 
attaching a relatively large or expensive hardware on a 
small, cheap device is not a logical option for 
synchronizing sensor nodes. The synchronization 
method for sensor networks should be developed with 
limited cost and size issues in mind. 

 

III. CONFICURATION 
In Smart AMR system we would like to assure the 

concurrence of event timing for measured data within 
milliseconds. Concerning the trade-off no hardware and 
bandwidth added to basic PHY. 

 

 
 

[Fig 4] Implementation Model 

Followings are major component consist of our system 
configuration. 
 
- Two-way time transfer algorithm  
- One millisecond counting RTC 
- Agile interrupt handler 
- Simple moving average digital filter 

 
The moving average is the most common digital filter 

to understand and use. In spite of its simplicity, the 
moving average filter is optimal for a common task: 
reducing random noise while retaining a sharp step 
response. This makes it the premier filter for time 
domain encoded signals.  

As the name implies, the moving average filter 
operates by averaging a number of points from the input 
signal to produce each point in the output signal. In 
equation form, this is written: 

∑
−

=

+=
1

0
][1][

M

j
jix

M
iy        Eq. 3. 

Where []x  is the input signal, []y  is the output sig-
nal, and M is the number of points in the average. 

IV. ANALYSIS 
[Fig. 5] shows the effect of how this works reduce 

timing fluctuation. The signal colored yellow is timing 
raw data. The other color’s plots show moving averaged 
result, the smoothing action of the moving average filter 
decreases the amount of the random time variance. The 
amount of noise reduction is equal to the square-root of 
the number of points in the average. For example, a 100 
point moving average filter reduces the noise by a factor 
of 10. 

[Fig. 6] and [Fig. 7] show probability density function 
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for simple moving average and square weighted moving 
average respectively. 
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[Fig. 5] Time Synchronization error smoothing 
characteristics for variable average numbers. 
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[Fig. 6] Probability density function 

for simple moving average 
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[Fig. 7] Probability density function  
for square weighted moving average 

 

V. CONCLUSION 
There are trade off between the requirements (eg. 

Energy Efficiency, Precision, Cost and Size). We 
constructed improved SNTP using precise meta data 
exchange and agile interrupt handling techniques with 

simple moving averaging algorithm. It shows 0.48 
millisecond jittering performance is obtained with 100 
points in the average. 
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[Fig. 8] Jittering Characteristics  

Standard deviation vs. averaging algorithm 
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