
Improved SNTP for Accurate Time Synchronization
in Smart AMR systems

Se-Young Oh, Dong-Doo Lee, Chang-Hwa Lee

ADMOTECH Inc, 1320 Gwanpyung-Dong Yusong-Gu, Dagjon 305-509, South Korea
 (Tel : 82-42-936-1353; Fax : 82-42-936-1350)
E-mail : {syoh, ddlee, chlee}@admotech.com

Abstract : In distributed sensor network such as distributed AMR system, accurate time synchronization is necessary to
assure the concurrence of event timing for measured data. There are NTP(Network Time Protocol) and SNTP (Simple
Network Time Protocol), RBS (Reference Broadcast Synchronization), TPSN (Time synchronization Protocol for
Sensor Networks) in time synchronization for distributed network systems.
In this paper, we suggested improved SNTP using precise meta data exchange and agile interrupt handling techniques

and showed that our method has accuracy of sub-millisecond compared to conventional SNTP with accuracy of few
second from the time synchronization performance analysis results.

Keywords : Time Synchronization, SNTP

I. INTRODUCTION
As in distributed sensor network such as distributed

AMR systems, accurate time synchronization is
necessary to assure the concurrence of event timing for
measured data.

There are two main purposes of time synchronization.
The first purpose is to ensure that events occur on time,

in the correct sequence. Therefore, synchronization is
necessary to start scheduled events and to register their
occurrence. Many activities in commerce, banking,
financial, business, transport, medicine, services, as a
few examples, may need to guarantee that tasks are
timely scheduled, and concurrent and cooperating
processes interoperate correctly. The second purpose is
tracing, that is, retrieving information concerning past
events, whenever is necessary, regarding when the
events occurred and in what sequence. This task is
possible only if accurate timestamps of each event are
available.
In this paper, we suggested improved SNTP using

precise meta data exchange and agile interrupt handling
techniques and showed that our method has accuracy of
sub- millisecond compared to conventional SNTP with
accuracy of few second from the time synchronization
performance analysis results.

II. OVERVIEW[2]
All network time synchronization methods rely on

some sort of message exchange between nodes.

Non-determinism in the network dynamics makes the
synchronization task challenging in many systems.

When a node in the network generates a timestamp to
send to another node for synchronization, the packet
carrying the timestamp will face a variable amount of

delay until it reaches and is decoded at its intended
receiver. This delay prevents the receiver from exactly
comparing the local clocks of the two nodes and
accurately synchronizing to the sender node. We can
basically decompose the sources of error in network
time synchronization methods into basic components:

 Send Time: This is the time spent to construct a
message at the sender. It includes the overhead of
operating system, and the time to transfer the message
to the network interface for transmission.

 Access Time: Each packet faces some delay at the
MAC layer before actual transmission. The sources of
this delay depend on the MAC scheme used, but some
typical reasons for delay are waiting for the channel to
be idle or waiting for the TDMA slot for transmission.

 Propagation Time: This is the time spent in
propagation of the message between the network
interfaces of the sender and the receiver.

 Receive Time: This is the time needed for the
network interface of the receiver to receive the message
and transfer it to the host.

[Fig. 1]. Message delivery delay

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 340

a. The Need For Synchronization in Sensor
Networks

There are several reasons for addressing the
synchronization problem in sensor networks.

 First, sensor nodes need to coordinate their operations
and collaborate to achieve a complex sensing task. Data
fusion is an example of such coordination in which data
collected at different nodes are aggregated into a
meaningful result. For example, in a vehicle tracking
application, sensor nodes report the location and time
that they sense the vehicle to a sink node which in turn
combines these information to estimate the location and
velocity of the vehicle. Clearly, if the sensor nodes lack
a common timescale (i.e., they are not synchronized) the
estimate will be inaccurate.

Second, synchronization can be used by power saving
schemes to increase network lifetime. For example,
sensors may sleep at appropriate times, and wake up
when necessary. When using power-saving modes, the
nodes should sleep and wake-up at coordinated times,
such that the radio receiver of a node is not turned off
when there is some data directed to it. This requires a
precise timing between sensor nodes.

b. Reference Broadcast Synchronization (RBS)

Reference Broadcast Synchronization (RBS) [3],
where their simple yet novel idea is to use a "third
party" for synchronization, their scheme synchronizes a
set of receivers with one another.

In RBS scheme, nodes send reference beacons to their
neighbors. A reference beacon does not include a
timestamp, but instead, its time of arrival is used by
receiving nodes as a reference point for comparing
clocks.

[Fig. 2] Comparison of conventional method to RBS

The authors argue that, by removing the sender's non-
determinism from the critical path [Fig. 2], RBS
achieves much better precision compared to traditional
synchronization methods that use two-way message
exchanges between synchronizing nodes. As the
sender's non-determinism has no effect on RBS
precision, the only sources of error can be the non-
determinism in propagation time and receive time. The
authors claim that a single broadcast will propagate to
all receivers at essentially the same time, and hence the
propagation error is negligible. This is especially true

when the radio ranges are relatively small, as is the case
for sensor networks. So they only account for the
receive time errors when analyzing accuracy of their
model.

In the simplest form of RBS, a node broadcasts a
single pulse to two receivers. The receivers, upon
receiving the pulse, exchange their receiving times of
the pulse, and try to estimate their relative phase offsets.
This basic RBS scheme can be extended in two ways:

1) allowing synchronization between n receivers by a
single pulse, where n may be larger than two,

2) increasing the number of reference pulses to achieve
higher precision. The authors show by simulation that
30 reference broadcasts (for a single synchronization in
time) can improve the precision from 11 sμ to 1.6 sμ

c. Timing-Sync Protocol for Sensor Networks
(TPSN)

Timing-Sync Protocol for Sensor Networks (TPSN)
[4] works in two phases: level discovery phase" and
synchronization phase". The aim of the first phase is to
create a hierarchical topology in the network, where
each node is assigned a level. Only one node is assigned
level 0, called the root node. In the second phase, a node
of level i synchronizes to a node of level 1−i . At the
end of the synchronization phase, all nodes are
synchronized to the root node and the network-wide
synchronization is achieved.

Consider a two-way message exchange between nodes
A and B as shown in [Fig.3]. Node A initiates the
synchronization by sending a synchronization pulse
packet at 1T (according to its local clock). This packet
includes A's level number, and the value 1T .

B receives this packet (according to its local clock) at
dTT +Δ+= 12 , where Δ is the relative clock drift

between the nodes, and d is the propagation delay of the
pulse. B responds at time 3T with an acknowledge-
ment packet, which includes the level number of B and
the values 1T , 2T , and 3T . Then, node A can
calculate the clock drift and propagation delay as below,
and synchronize itself to B.

[Fig. 3] Two way message exchange between a pair of

nodes

Local time

Local time

Node ‘A’

Node ‘B’

T1 T4

T2 T3

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 341

;
2

)34()12(TTTT −−−
=Δ Eq. 1.

;
2

)34()12(TTTTd −+−
= Eq. 2.

The synchronization phase is initiated by the root
node's time sync packet. On receiving this packet, level
1 nodes initiate a two-way message exchange with the
root. Before initiating the message exchange, each node
waits for some random time, in order to minimize
collisions on the wireless channel. Once they get back a
reply from the root node, they adjust their clocks to the
root node. Level 2 nodes, overhearing some level 1
node's communication with the root, initiate a two-way
message exchange with a level 1 node, again after
waiting for some random time to ensure that level 1
nodes have completed their synchronization. This
procedure eventually gets all nodes synchronized to the
root node. TPSN is implemented on Berkeley's Mica
architecture, and makes use of time-stamping packets at
the MAC layer in order to reduce uncertainty at sender.
Ganeriwal et.al. claim that TPSN achieves two times
better precision than RBS. They state that the precision
of 6.5 sμ .

d. Requirements on the Synchronization Schemes for
Sensor Networks

There are trade off between the requirements of an
efficient synchronization solution (e.g., precision versus
energy efficiency), thus a single scheme may not satisfy
them altogether.

 Energy Efficiency : As with all of the protocols
designed for sensor networks, synchronization schemes
should take into account the limited energy resources
contained in sensor nodes.

 Scalability - Most sensor network applications need
deployment of a large number of sensor nodes. A
synchronization scheme should scale well with
increasing number of nodes and/or high density in the
network.

 Precision - The need for precision, or accuracy, may
vary significantly depending on the specific application
and the purpose of synchronization. For some
applications, even a simple ordering of events and
messages may suffice whereas for some others, the
requirement for synchronization accuracy may be on the
order of a few sμ .

 Cost and Size - Wireless sensor nodes are very small
and inexpensive devices. Therefore, as noted earlier,
attaching a relatively large or expensive hardware on a
small, cheap device is not a logical option for
synchronizing sensor nodes. The synchronization
method for sensor networks should be developed with
limited cost and size issues in mind.

III. CONFICURATION
In Smart AMR system we would like to assure the

concurrence of event timing for measured data within
milliseconds. Concerning the trade-off no hardware and
bandwidth added to basic PHY.

[Fig 4] Implementation Model

Followings are major component consist of our system
configuration.

- Two-way time transfer algorithm
- One millisecond counting RTC
- Agile interrupt handler
- Simple moving average digital filter

The moving average is the most common digital filter

to understand and use. In spite of its simplicity, the
moving average filter is optimal for a common task:
reducing random noise while retaining a sharp step
response. This makes it the premier filter for time
domain encoded signals.

As the name implies, the moving average filter
operates by averaging a number of points from the input
signal to produce each point in the output signal. In
equation form, this is written:

∑
−

=

+=
1

0
][1][

M

j
jix

M
iy Eq. 3.

Where []x is the input signal, []y is the output sig-
nal, and M is the number of points in the average.

IV. ANALYSIS
[Fig. 5] shows the effect of how this works reduce

timing fluctuation. The signal colored yellow is timing
raw data. The other color’s plots show moving averaged
result, the smoothing action of the moving average filter
decreases the amount of the random time variance. The
amount of noise reduction is equal to the square-root of
the number of points in the average. For example, a 100
point moving average filter reduces the noise by a factor
of 10.

[Fig. 6] and [Fig. 7] show probability density function

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 342

for simple moving average and square weighted moving
average respectively.

0 100 200 300 400 500 600 700 800 900 1000
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Iteration (times)

Ti
m

e
E

rro
r [

m
ill

is
ec

on
ds

]

n=1
n=2
n=5
n=10
n=20
n=50
n=100

[Fig. 5] Time Synchronization error smoothing
characteristics for variable average numbers.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

Time Error [milliseconds]

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n

[Fig. 6] Probability density function

for simple moving average

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

Time Error [milliseconds]

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n

[Fig. 7] Probability density function
for square weighted moving average

V. CONCLUSION
There are trade off between the requirements (eg.

Energy Efficiency, Precision, Cost and Size). We
constructed improved SNTP using precise meta data
exchange and agile interrupt handling techniques with

simple moving averaging algorithm. It shows 0.48
millisecond jittering performance is obtained with 100
points in the average.

The standard deviation

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

Simple moving average
Square root weighted moving average

linear moving average
Square weighted moving average

[Fig. 8] Jittering Characteristics

Standard deviation vs. averaging algorithm

ACKNOWLEDGEMENTS
The Work developed in this paper has been supported

by the DAEDEOK INNOPLIS (“R&D Hub Cluster
project”).

REFERENCES
[1] Cristina D. Murta, Pedro R. Torres-Jr., “Charac-
terizing Quality of Time and Topology in a Time
Synchronization Network”

[2] Fikret Sivrikaya et. al., “Time Synchronization
in Sensor Networks: A Survey” IEEE In Network, IEEE,
Vol. 18, No. 4. (2004), pp. 45-50.

[3] J. Elson, L. Girod, D. Estrin, \Fine-Grained Time
Synchronization using Reference Broadcasts",
Proceedings of the Fifth Symposium on Operating
Systems Design and Implementation (OSDI 2002),
Boston, MA, December 2002.

[4] S. Ganeriwal, Ram Kumar, M. Srivastava, \Timing
Sync Protocol for Sensor Networks", ACM SenSys, Los
Angeles, November 2003.

[5] D. Mills, Simple Network Time Protocol (SNTP)
Version 4 for IPv4, IPv6 and OSI, University of
Delaware, 1996

[6] Steven W. Smith, “The Scientist and Engineer's Gui-
de to Digital Signal Processing” Second Edition, Cali-
fornia Technical Publishing, San Diego, 1999, pp 277-
279

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 343

