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Abstract: Change point detection (CPD) problem in time series is to find that a structure of generating data has changed 
at some time point by some cause. We formulated the structural change detection in time series as an optimal stopping 
problem using the concept of DP (Dynamic Programming) and presented the optimal solution and the correctness by 
numerical calculation. In this paper, we present the solution theorem and its proof using reduction to absurdity. 
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I. INTRODUCTION 

Change point detection (CPD) problem in time 
series is to find that a structure of generating data has 
changed at some time point by some cause. In the 
literature [1],[2], we have proposed a new and practical 
method based on an evaluation function of loss cost. In 
addition, we have formulated the CPD problem as an 
optimal stopping problem and have given the algorithm 
for the optimum solution and also have presented the 
effectiveness using numerical experimental results.  

In this paper, we show the solution theorem and its 
proof using reduction to absurdity. 

 

II. FORMULATION 

1. Definition of Function  
Let the cost(n) be an  as a linear function for n, 

where a is the loss caused by the failing (i.e., missing 
the forecast, or fail in prediction) in one time. And for 
simplicity, let C and A denote the Total cost and cost (A), 
respectively. Then, the evaluation function is denoted as 
the following Equation (1). 
                               (1) naAC ⋅+=
 We introduce a function to obtain the 
optimum number of times n that minimizes the 
expectation value of C, using the concept of DP. Let N 
be the optimum number. Let the function  be 
the evaluation function at the time when the failing has 
occurred in continuing n times ( ). Then the 
function can be defined in the following form. 

),( NnEC

),( NnEC

Nn ≤

(if n=N )             (2) NaA)N,n(EC ・+=
(if n<N)  naSSPNnEC nn ・・)|(),( 1+=  
          ),())|(( NnECSSP nn 11 1 +−+ +               (3) 

where Sn is the state of failing in continuing n times, 
1+nS  is the state of unfailing (or hitting) for the (n+1)-

th time observed data, and )|( nn SSP 1+  means the 
conditional probability that the state 1+nS  occurs after 
the state Sn. 

Then, from the definition of the function , 
the goal is to find the N that minimizes , 
because the N is the same as n that minimizes the 
expectation of the evaluation function of (1). 

),( NnEC
),( NEC 0

2. Minimization of the Evaluation Function 
For the aforementioned EC(0,N), the following 

theorem holds and gives the n that minimizes the 
expectation value of the evaluation function of (1).  

 
A. Theorem 

The N that minimizes EC(0,N) is given as the largest 
number n that satisfies the following Inequality (4).  

  
 )|()( 1−+< nn SSPaAa ・                 (4) 

 
where the number N+1 can also be the optimum one 
that minimizes EC(0,N), i.e.,  EC(0,N) = EC(0,N+1) , 
only if )|()( 1 NN SSPaAa ++= ・ . 
Proof.  
We derive a contradiction with two assumptions under a 
premise as follows.  

 
Premise: a number N ′ is the largest number n that 
satisfies the Inequality (4). 
Assumption 1: 
  There exists a number N ′′ such that 
               '" NN < and . )',0()",0( NECNEC <
Assumption 2:  
  There exists a number N ′′ such that 
              "' NN < and .  ),0(),0( NECNEC ′′>′
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We give the proof of this theorem by three steps. At 
Step 1, we prove fundamental lemmas: Lemma 1-1 and 
Lemma 1-2. At Step 2, we prove two lemmas: Lemma 
2-1, and Lemma 2-2. Using those lemmas, we show that 
the above Assumption 1 contradicts the Premise. 
Similarly, at Step 3, we show that the Assumption 2 
contradicts the Premise, using two lemmas: Lemma 3-1 
and Lemma 3-2, which are proved in Appendix. 

B. Step 1 

Lemma 1-1. 
Let be the event that the structural change 

occurs once during the period of observation in 
continuing n times. Let  be the conditional 
probability that the  happens under the condition 
that failing occurs in continuing n times. 

cnE

)|( ncn SEP
cnE

)|( ncn SEP is an increase function for n.  
Proof. 

We derive some useful equations for this proof.  
The event  is given in (5). cnE
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where E is the event that there is no structural change, 
 is the event that the structural change occurred, and  cE

nE  is defined as . I
n
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The probability of the event  defined in (5) is 
given as follows.   
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λ : Probability of the structural change occurrence. 
The joint event of and , and its probability are 
given by (7) and (8), respectively. Let R be the 
probability of the failing when the structure is 
unchanged. Let Rc be the probability of the failing when 
the structural change occurred. 
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Therefore, using (6) and (8), we have   
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According to the Bayes’ theorem, the posterior 
probability  is given by the following (10). )|( ncn SEP
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The D(n) is also expressed as the following (11).   
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 where 
cR

Rλ ) (X －1=  . 

Since 10 <≤λ , 110 ≤−< λ , and , then RRc >
0 < X < 1. So, the D(n) becomes a monotonous 

decrease for n. Therefore, the probability  of 
(10) is a monotonous increase function for n.  

)|( ncn SEP

Lemma 1-1 is proved. 
 

Remark: Lemma 1-1 indicates that, if the number of 
times of the failing n increases, the probability that the 
structural change has occurred increases. This meets our 
intuition clearly. 

Lemma 1-2. 
The conditional probability )|( 1 nn SSP + is a decrease 
function for n. 
Proof. 
  We have  
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))|(1)(1()|( 1 ncnnn SEPRSSP −−=+    
                 (12) )|()1( ncnc SEPR−+
The first term in the RHS of (12) shows the 

probability that the hitting occurs for the (n+1)-th time 
observed data when the structure is unchanged. The 
second term shows the probability that the hitting 
occurs for the (n+1)-th time observed data when the 
structure changed. From (12), we have 

))(|(1)|( 1 cncnnn RRSEPRSSP −+−=+     (13) 
By Lemma 1-1, is an increase function, 

and , therefore, 
)|( ncn SEP

cRR < )|( 1 nn SSP + is a decrease 
function for n. (The decreasing situation by the 
numerical computing is shown in Fig.1.)  

Lemma 1-2 is proved. 
 

Remark: Lemma 1-2 indicates that, if the number of 
times of continuous failing increases, the probability of 
the hitting for the next observed data after those 
continuous failing decreases. This is intuitively clear, 
because, by Lemma 1-1, the probability of the structural 
change increases if the number of times of the 
continuous failing increases.  

 
 

 
 
 
 
 
 
 
 

Fig.1. The probability )|( 1−nn SSP  for three kinds of λ
(Occurrence probabili ty of structural change)
 in the case of Rc =0.95. 
 

C. Step 2 
We derive a contradiction for proving the Theorem 

using the following Lemma 2-1 and Lemma 2-2, where 
the notation is the same as aforementioned. 

Lemma 2-1. 
If , then  '" NN < ),(),( NNECNNEC ′′′′<′′′

Proof. 
Since , we can represent as 

, where .  Then we have the 
equivalent inequality to this lemma as follows. 

'" NN < "N
mNN −= '" Nm ′= ,,,1

),(),( mNmNECNmNEC −′−′<′−′      (14)  
 

We prove the Inequality (14) by mathematical 
induction on m.   

(i) If 1=m , applying the Equation (3) to the left 
hand side (LHS) of Inequality (14), we have 

)1()|(),1( 1 −′⋅=′−′ −′′ NaSSPNNEC NN  

),())|(1( 1 NNECSSP NN ′′⋅−+ −′′  

)1()|( 1 −′⋅= −′′ NaSSP NN  

)())|(1( 1 NaASSP NN ′⋅+⋅−+ −′′  
)|()( 1−′′⋅+−′+= NN SSPaANaA            (15) 

By the Premise,  
   aSSPaA NN >+ − )|()( 1''             (16) 

Therefore, next inequality holds on the RHS of (15).   

)(
)|()(

1
1

−′+=

−′+<⋅+−′+ −′′

NaA
aNaASSPaANaA NN

Then we have, 
),()|()( 111 −′−′<⋅+−′+ −′′ NNECSSPaANaA NN   

(17) 
This proves the Inequality (14) for m=1.  

 
(ii) Assume that the Inequality (14) holds for 

km = .  In case of 1+= km , applying Equation (3) to 
the LHS of the Inequality (14), we have,   

)1()|(),1( 1 −−′⋅⋅=′−−′ −−′−′ kNaSSPNkNEC kNkN

       ),())|(1( 1 NkNECSSP kNkN ′−′⋅−+ −−′−′ (18) By 
the assumption for km = , the next inequality holds. 

),(),( kNkNECNkNEC −′−′<′−′ . 
Therefore, for the RHS of (18), we have 

)1()|( 1 −−′⋅⋅−−′−′ kNaSSP kNkN

),())|(1( 1 NkNECSSP kNkN ′−′⋅−+ −−′−′  

)1()|( 1 −−′⋅⋅< −−′−′ kNaSSP kNkN  

),())|(1( 1 kNkNECSSP kNkN −′−′⋅−+ −−′−′  (19) 
Applying Equation (2) to the RHS of (19), we have 

)1()|( 1 −−′⋅⋅−−′−′ kNaSSP kNkN  

))(())|(1( 1 kNaASSP kNkN −′⋅+⋅−+ −−′−′  

)|()()( 1−−′−′⋅+−−′⋅+= kNkN SSPAakNaA  (20) 
 
By Lemma 1-2, )|( 1−nn SSP is a decrease function for 

n and by the Premise for , we have  N ′

a
SSPaASSPaA NNkNkN

>
+>+ −−−′−′ )|()()|()( 1''1  

Therefore, next inequality is obtained for the RHS of 
(20).   

)|()()( 1−−′−′⋅+−−′⋅+ kNkN SSPAakNaA  
akNaA −−′⋅+< )(                  (21) 
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By Equation (2), the RHS of  (21) is equal to  
)1,1( −−′−−′ kNkNEC . 

Thus, we have the following (22), and this implies that 
Inequality (14) holds for the case . 1+= km

)1,1(),1( −−′−−′<′−−′ kNkNECNkNEC (22)  
This proves the Lemma 2-1. 

Lemma 2-2 
If , then, for m ('" NN < Nm ′′≤<0 ), 

),(),( NmNECNmNEC ′′−′′<′−′′           (23) 
Proof. 
We prove this by mathematical induction for m.   

(i) First, for m=1, we prove the following inequality. 
),1(),1( NNECNNEC ′′−′′<′−′′           (24) 

Applying Equation (3) to the LHS of the Inequality (24), 
we have 

)1()|(),1( 1"" −′′⋅⋅=′−′′ − NaSSPNNEC NN  

),())|(1( 1 NNECSSP NN ′′′⋅−+ −′′′′       (25) 
By applying Lemma 2-1 to the RHS of (25), the 
following inequality is obtained.   

)1()|(),1( 1 −′′⋅⋅<′−′′ −′′′′ NaSSPNNEC NN

),())|(1( 1 NNECSSP NN ′′′′⋅−+ −′′′′        (26) 
Applying the Equation (3) to the RHS of Inequality 
(24),  is equal to the RHS of (26). 
Then, the Inequality (24) holds, and this establishes the 
Lemma 2-2 for . 

),1( NNEC ′′−′′

1=m
 
 (ii) Assuming that the Lemma 2-2 holds for km = , we 
prove it for the case of . The LHS of 
Inequality (23) is expressed as (27) using Equation (3).   

1+= km

),1( NkNEC ′−−′′  

)1()|( 1 −−′′⋅⋅= −−′′−′′ kNaSSP kNkN  

),())|(1( 1"" NkNECSSP kNkN ′−′′⋅−+ −−− (27) 
Here, recalling the assumption that, for ,   km =

),(),( NkNECNkNEC ′′−′′<′−′′  
We can obtain the following inequality from (27).   

),1( NkNEC ′−−′′  

)1()|( 1 −−′′⋅⋅< −−′′−′′ kNaSSP kNkN  

),())|(1( 1 NkNECSSP kNkN ′′−′′⋅−+ −−′′−′′  (28) 
The RHS of Inequality (23) for ,  1+= km

),1( NkNEC ′′−−′′  is equal to the RHS of (28), by 
Equation (3). Therefore, we have 

),1(),1( NkNECNkNEC ′′−−′′<′−−′′     (29) 
This completes the proof of the Lemma 2-2. 
 
By putting  in the Lemma 2-2, we have Nm ′′=

),0(),0( NECNEC ′′<′  in case of '" NN < . 
This inequality contradicts the Assumption 1: There 
exists a number such that"N '" NN < and 

)',0()",0( NECNEC < . 

D. Step 3 
Similarly to the Step 2, the following Lemma 3-1 

and Lemma 3-2 hold, as described in subsequent 
Appendix. 
Lemma 3-1. 

If "' NN < , then ,  )','()",'( NNECNNEC ≥
Where the equality holds only if 1'" += NN and 

)|()( '1' NN SSPaAa ++= ・ . 
Lemma 3-2. 

If "' NN < , then, for  ( ) m '0 Nm≤<
),(),( NmNECNmNEC ′−′≥′′−′ ,           

where the equality holds only if 1'" += NN and 
)|()( '1' NN SSPaAa ++= ・ .  

 
   By putting 'Nm =  in the Lemma 3-2, we have 

 in case of )',0()",0( NECNEC ≥ NN ′′<′ . 
This contradicts Assumption 2: There exists a 
number N ′′ such that "' NN < and ),0(),0( NECNEC ′′>′ . 

After all, ),0(),0( NECNEC ′′≤′ ( or '" NN < NN ′′<′ ), 
where the equality holds only if 1'" += NN  and 

)|()( '1' NN SSPaAa ++= ・ .  

It means that N ′ minimizes . And, when ),0( NEC

)|()( '1' NN SSPaAa ++= ・ , also minimizes 
, i.e., 

1'+N
),0( NEC )1',0(),0( +=′ NECNEC .  

This completes the proof of Theorem. Fig.2 shows 
that the relation between the expectation EC(0,N) and N. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig.2. The expectation EC(0,N) and N with the ratio of 
A/a fixed (A=1.5, a =0.1) and varying . Nmin means 
the optimum number that minimizes EC(0,N). 

λ
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III. CONCLUSION 

We have proposed a sequential processing method 
for structural change detection of time series data as an 
optimal stopping problem with a cost evaluation 
function. We have presented the solution theorem and 
its proof using reduction to absurdity.  

 

Appendix 

Proof of Lemma 3-1 and Lemma 3-2 

A1. Lemma 3-1 
If , then ,  "' NN < )','()",'( NNECNNEC ≥

Where the equality holds only if and if 1'" += NN
)|()( '1' NN SSPaAa ++= ・ . 

Proof. 
Since , we can let  (m: natural 
number), and we have . 
We prove this by mathematical induction for m.   

"' NN < mNN += '''
)','(),'( NNECmNNEC ≥+′

(i) For m=1, we prove that 
)','()1','( NNECNNEC ≥+                 (a1) 

By applying the Equation (3) to the LHS of (a1), we 
have 

')|()1','( '1' NaSSPNNEC NN ⋅⋅=+ +  

)1',1'())|(1( '1' ++⋅−+ + NNECSSP NN  

))'(())|((')|( '''' 11 11 +⋅+⋅−+⋅⋅= ++ NaASSPNaSSP NNNN

)|()()'( '' NN SSPaANaA 11 +⋅+−+⋅+=         (a2) 

By the Premise that N  is the largest number n that 
satisfies 

′
)|()( 1−+< nn SSPaAa ・ , and by the fact that 

)|( 1−nn SSP decreases for n, we have 

)|()( '1' NN SSPaAa +⋅+≥  for .   1'+N
Then, 

)|()()1'()1','( '1' NN SSPaANaANNEC +⋅+−+⋅+=+      
)','(')1'( NNECNaAaNaA =⋅+=−+⋅+≥ . 

This implies that (a1) holds. 
 
We can see that the equality in (a1) holds only if 

aSSPaA NN =⋅+ + )|()( '1' , otherwise,  
)','()1','( NNECNNEC >+ . 

However,  
even if , i.e., )','()1','( NNECNNEC =+

 if aSSPaA NN =⋅+ + )|()( '1' ,  

it holds that aSSPaA NN <⋅+ ++ )|()( 1'2'             (a3) 

because the probability )|( nn SSP 1+  decreases for n. 
 
  Here, we prove the following Proposition. 

Proposition. 
)','()2','( NNECNNEC >+                 (a4) 

   Even if )','()1','( NNECNNEC =+ . 
Proof.  
Using the Equation (3), 

')|()2','( '1' NaSSPNNEC NN ⋅⋅=+ +  

)2',1'())|(1( '1' ++⋅−+ + NNECSSP NN     (a5) 
By applying the Equation (3) to  in (a5),  )2',1'( ++ NNEC
we have  

)1'()|()2',1'( 1'2' +⋅⋅=++ ++ NaSSPNNEC NN  

        )2',2'())|(1( 1'2' ++⋅−+ ++ NNECSSP NN  

)1'()|( 1'2' +⋅⋅= ++ NaSSP NN  

))2'(())|(1( 1'2' +⋅+⋅−+ ++ NaASSP NN  

)|()()2'( 1'2' ++⋅+−+⋅+= NN SSPaANaA    (a6) 
   Using (a3), (a6) and the Equation (2), we have  

)1',1'()1'()2',1'( ++=+⋅+>++ NNECNaANNEC . 
Thus, )1',1'()2',1'( ++>++ NNECNNEC         (a7) 
Moreover, using (a5), (a7) and the Equation (3),  

')|()2','( '1' NaSSPNNEC NN ⋅⋅>+ +  

)1',1'())|(1( '1' ++⋅−+ + NNECSSP NN  

   )1','( += NNEC  
Then, using (a1) that we have already proved, we obtain 
 )','()2','( NNECNNEC >+ . 
Thus we have proved the above Proposition. 
 
(ii) Accordingly, we can assume that  

)','()','( NNECkNNEC >+  for  (>1). km =
And, we go on to prove that, for ,  1+= km

)','()1','( NNECkNNEC >++  holds. 
By applying Equation (3) to the above LHS, we have 

')|()1','( '1' NaSSPkNNEC NN ⋅⋅=++ +  
)1',1'())|(1( '1' +++⋅− + kNNECSSP NN   (a8) 

Let ')|( '' NaSSP NN ⋅⋅= +1α , ))|(( '' NN SSP 11 +−=β , 
then we have 10 <≤ α , 10 ≤< β , and 

)','()','( kNNECkNNEC ++⋅+=+ 1βα  
)','()','( 111 +++⋅+=++ kNNECkNNEC βα  (a9)  

Thus, )','()','( kNNECkNNEC +>++ 1  holds if and 
only if )',1'()1',1'( kNNECkNNEC ++>+++ . 
Similarly,  

)',1'()1',1'( kNNECkNNEC ++>+++  if and only if 
)',2'()1',2'( kNNECkNNEC ++>+++ .  

Consequently, we have the following equivalent relation. 
)','()1','( kNNECkNNEC +>++  if and only if 

)','()1','( kNkNECkNkNEC ++>+++          (a10)            
By applying the Equation (2) and (3) to the LHS of 
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 (a10), we have         
)'()|()1','( '1' kNaSSPkNkNEC kNkN +⋅⋅=+++ +++  

)1',1'())|(1( '1' ++++⋅−+ +++ kNkNECSSP kNkN  

{ })1'(()'()|( '1' ++⋅+−+⋅⋅= +++ kNaAkNaSSP kNkN  
)1'( ++⋅++ kNaA  

)|()()1'( '1' kNkN SSPaAkNaA +++⋅+−++⋅+=   (a11) 

Since aSSPaA kNkN <⋅+ +++ )|()( '1' , and by the 
Equation (2), we have  
      The last RHS of (a11) akNaA −++⋅+> )1'(  
          (a12) )','()'( kNkNECkNaA ++=+⋅+=
Thus, it establishes the Inequality (a10), i.e.,  

)','()1','( kNkNECkNkNEC ++>+++  .            
Since this inequality is equivalent to the following 

)','()1','( kNNECkNNEC +>++ , 
and by the assumption of induction for ,  km =

)','()','( NNECkNNEC >+ , we have   
)','()1','( NNECkNNEC >++ . 

This completes the proof of Lemma 3-1. 

A2. Lemma 3-2 
If , then for  ("' NN < m '0 Nm≤< ), 

),(),( NmNECNmNEC ′−′≥′′−′         (b1) 

where the equality holds only if and  1'" += NN
 )|()( '1' NN SSPaAa ++= ・ . 
Proof.  
We prove this by mathematical induction for . m
(i) If , applying the Equation (3) to the LHS of 
(b1), we have 

1=m

)1()|(),1( 1 −′⋅⋅=′′−′ −′′ NaSSPNNEC NN     

),())|(1( 1 NNECSSP NN ′′′⋅−+ −′′      (b2) 
Using the Lemma 3-1, we have 

)1()|(),1( 1'' −′⋅⋅≥′′−′ − NaSSPNNEC NN     

),())|(1( 1'' NNECSSP NN ′′⋅−+ −     (b3) 
where the equality holds only if  and 1'' += NN
  aSSPaA NN =⋅+ + )|()( '1' . 
By the Equation (3), the RHS of (b3) equals to 

)',1( NNEC −′ . Thus we have 

),1(),1( NNECNNEC ′−′≥′′−′           (b4) 
This establishes the Lemma 3-2 for , where the 
equality holds only if 

1=m
1'' += NN  and 

 aSSPaA NN =⋅+ + )|()( '1' . 
 
 (ii) Assuming that Lemma 3-2 holds for km= , we 
prove it for . By applying the Equation (3) to 
the LHS of (b1), we have 

1+= km

),1( NkNEC ′′−−′  

)1()|( 1'' −−′⋅⋅= −−− kNaSSP kNkN  
),())|(1( 1'' NkNECSSP kNkN ′′−′⋅−+ −−−     (b5) 

By the above assumption, 

 ),(),( NkNECNkNEC ′−′≥′′−′ . 
Then, from (b5), we have 

),1( NkNEC ′′−−′  

)1()|( 1'' −−′⋅⋅≥ −−− kNaSSP kNkN  

),())|(1( 1'' NkNECSSP kNkN ′−′⋅−+ −−−  (b6) 
By the Equation (3), the RHS of (b6) equals to 

)',1( NkNEC −−′ . Thus we have 
),1(),1( NkNECNkNEC ′−−′≥′′−−′ . 

This establishes the Lemma 3-2 for 1+= km , where 
the equality holds only if  and 1'' += NN
  aSSPaA NN =⋅+ + )|()( '' 1 . 
The proof of Lemma 3-2 is completed. 
 
 
 
 
 
 
 

REFERENCES 
[1] Hiromichi Kawano, et al (2004), Structural Change 
Detection in Time Series Based on DP with Action Cost, 
Proc. of IEEE ISCIT2004, pp.114-119. 
[2] Tetsuo Hattori, et al (2010), Early Structural Change 
Detection as an Optimal Stopping Problem (I), AROB 
15th ’10. 

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 772




