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Abstract:  Even if an appropriate prediction expression and/or model are constructed to fit a time series, the model 
gradually begins to fail the prediction of the time series from some time point. In such case, it will be important not 
only to quickly detect the failing situation but also to renew the prediction model after the detection as soon as possible. 
In this paper, we formulate the structural change detection in time series as an optimal stopping problem, using the 
concept of DP (Dynamic Programming). The cost function is defined as the sum of a loss cost by failing and an action 
cost after the detection. And we present propose the optimal solution and the correctness by numerical calculation. Also 
we clarify the effectiveness by a numerical experimentation.  
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I. INTRODUCTION 

Change point detection (CPD) problem in time 
series is to find that a structure of generating data has 
changed at some time point by some cause. We consider 
that the problem is very important and that it can be 
applied to a wide range of application fields [1]. The 
processing method for the CPD problem is roughly 
divided into two types: one is batch processing that 
checks all generated data in the past and another is 
sequential processing that checks if the structure has 
changed or not at every new data generation.  

As the former representative method, Chow test is 
well known and is often used in econometrics [2]. It 
does a statistical test by setting the hypothesis that the 
change has occurred at time t. As the latter 
representative method, there are Bayes’ method [2],[3] 
CUSUM, etc., [4] based on sequential probability ratio 
test.  

In practical situation, we have to consider not only 
that a loss cost is involved with prediction error, but also 
that an action to be taken after the change detection will 
need a cost. Conversely, the CPD is necessary in order 
to judge when to take the action.  Under such 
situations, we must consider the trade-off between loss 
by the degradation and cost for the quality reformation. 
However, as far as the authors can know, no such 
conventional CPD method considering the action cost 

has been proposed, in spite of the fact that such method 
is very useful at practical level. 

In this paper, we propose a new and practical 
method based on an evaluation function of loss cost. 
And we formulate the CPD problem as an optimal 
stopping problem using the concept of DP (Dynamic 
Programming) and give the optimum solution by 
numerical calculation the formulation. We consider that 
our method is effective in the sense as follows.   

1) Differently from the Chow test, it does not need 
to set the change point in a priori.  

2) Unlike the Bayes’ method, it does not need to 
give the generation distribution of time series data. 

3) It minimizes the evaluation function that sums up 
the loss involved with prediction error and action cost to 
be taken after the change detection. 
 Also in this paper, we show the effectiveness of our 
method by numerical experimentation 

 
 

II. FORMULATION AS OPTIMAL 
STOPPING PROBLEM 

1. Evaluation function 
We formulate the CPD problem as an optimal 

stopping one based on DP with an evaluation function 
that sums up the cost involved by prediction error and 
action cost to be taken after the change detection. 
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Fig.1. Example of time series data where the true 
change point tc* =70. 

 
For example, a prediction expression is given in the 

following equation as a function of time t, where yt, 1β , 
,  mean the function value, two constant 

coefficients, and error term, respectively.  
0β ε

 
εββ ++⋅= 01 tyt                        (1) 

The error term  is given as a random variable of 
the normal distribution of variance and average of 0, 
i.e., 

ε
2σ

ε ~N(0, ). A time series data based on the 
Equation (1) is shown in Fig.1, that is generated by 
making normal random numbers of average 0 and 
variance 1 for 

2σ

ε , and by setting =0.2, =1 for the 
time t=1,2,…,70, and =0.8, =-41  for the time 
after t=71. The tolerant error interval or tolerance zone 
between two broken lines as shown in Fig. 1 is decided 
using the first time series data from t=1 to t=20. 

1β 0β

1β 0β

In Fig.1, we think of two situations: one is the 
situation that the observed data goes out from the 
tolerance zone, and another the situation that the 
observed data goes in the zone. We call the former 
situation “failing” (or “not hitting”) and the latter 
“hitting”. We assume that the structure changes when 
the failing occurs for continuing N times. 

The evaluation function is given by (2) as the sum of 
two kinds of cost: the damage caused by the failing (i.e., 
failing loss) and action cost to be taken after the change 
detection. 

Total_cost=cost(A)+cost(n)                (2) 
where cost(n) is the sum of the loss by continuing n 

times failing before the structural change detection, and 
cost(A) denotes the cost involved by the action after the 

change detection. Then we have to find the number of N 
that minimizes the expectation value of Total_cost, 
assuming that the structural change occurs randomly. 

2. Structural change model 
We can assume that the structural change is Poisson 

occurrence of average λ, and that, once the change has 
occurred during the observing period, the structure does 
not go back to the previous one. The reason why we set 
such a model is that we focus on the detection of the 
first structural change in the sequential processing (or 
sequential test). The concept of the structural change 
model is shown in Fig. 2.  

 
 λ 1.0 1-λ
 

Ec  E 
 
 
 
 

 

Ec : State that the structural change occurred. 
 E : State that the structure is unchanged. 
λ: Probability of the structural change occurrence. 
       (Poisson Process.) 

Fig.2. Structural change model. 
 
Moreover, we introduce a more detailed model. Let 

R be the probability of the failing when the structure is 
unchanged. Let Rc be the probability of the failing when 
the structure change occurred. We consider that Rc is 
greater than R, i.e., Rc>R. The detailed model for the 
State Ec and E are illustrated as similar probabilistic 
finite state automatons in Fig.3 and Fig.4, respectively. 

 
 
 
 
 
 
 

Fig.3. Internal model of the State E. 

 

out in

1-R R  

R

E

1-R 

 

out in

1-Rc

1-Rc

Rc 

Rc

Ec  
 
 
 
 
. 

 
Fig.4. Internal model of the State Ec. 
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3. Definition 
Let the cost(n) be as a linear function for n, 

where is the loss caused by the failing in one time. 
And for simplicity, let C and A denote the Total_cost 
and cost (A), respectively. Then, the evaluation function 
in (2) is denoted as the following equation (3). 

na ⋅
a

 
                                 (3) naAC ⋅+=

We recursively define a function  to obtain 
the optimum number of times n that minimizes the 
expectation value of the evaluation function of Equation 
(3), using the concept of DP (Dynamic Programming). 
Let N be the optimum number. Let the function 

 be the expectation value of the evaluation 
function at the time when the failing has occurred in 
continuing n times, where n is less than or equal to N, 
i.e., . 

),( NnEC

),( NnEC

Nn≤≤0
Thus the function is recursively defined as follows. 
 

(if  n = N ) NaANnEC ・+=),(           (4) 

(if  n < N )  naSSPNnEC nn ・・)|(),( 1+=  
),())|(( NnECSSP nn 11 1 +−+ +      (5) 

 
where Sn means the state of failing in continuing n times, 

1+nS  the state of hitting at the (n+1) th observed data, 
and )|( 1 nn SSP +  means the conditional probability 
that the state 1+nS  occurs after the state Sn. 

The first term in the right-hand side (RHS) of 
Equation (4) indicates the expectation value of the 
evaluation function at the time when hitting happens at 
the (n+1)th data after the continuing n times failing. The 
second term in the RHS of Equation (5) indicates the 
expectation value of the evaluation function for the time 
when failing happens at the (n+1)th data after 
continuing n times failing. 

Then, from the definition of the function , 
the goal is to find the N that minimizes , 
because the N is the same as n that minimizes the 
expectation value of the evaluation function of (4).   

),( NnEC
),( NEC 0

4. Minimization of the evaluation function 
The analytical solution N that minimizes 

can be deduced. The strict proof needs many 
pages, then we show numerical solution. 

),( NEC 0

The function  is defined by recursive 
expressions (4) and (5), then  can be 
computed by recursively. In the process of this 
computation, 

),( NEC 0
),( NEC 0

)|( 1 nn SSP +  can be calculated as follows. 

Let be the event that the structural change 
occurs once during the period of observation in 
continuing n times. Let  be the conditional 

probability that the happens under the condition 
that failing has already occurred for continuing n times. 
Based on the model in Fig.3 and Fig.4, 

cnE

)|( ncn SEP

cnE

 
)|()())|()(()|( ncncncnnn SEPRSEPRSSP −+−−=+ 1111  

            (6) 
Let E be the event that there is no structural change. 

According to the Bayes’ theorem  can be 
represented as (7). 
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The procedure to calculate  is shown in 

Fig.5. 
),( NEC 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nmin = 0

Nmin= Nmin+ 1

N = Nmin

munmin NaA)N,n(EC ⋅+=

)1n(a)S|S(P)N,1n(EC 1nnmin −⋅⋅=− −

)N,n(EC))S|S(P1( min1nn ⋅−+ −
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Fig.5. The procedure to calculate N that minimizes 
EC(0,N) according to the recursive definition. 
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III. EXPERIMENTATION 

In this section, we make a comparison between the 
proposed method and Chow Test using the time series 
data shown in Fig.1. 

1. Outline of experimentation 
  Step1: Generate the time series data (Fig.1) based on 
the Equation (1), by making normal random numbers of 
average 0 and variance  for 12 =σ ε , and by setting 

1β =0.2, 0β =1 for the time t=1,2,…,70, and 1β =b, 

0β =(0.2-b)71+1, for the time after t=71. 
  Step2: Make prediction expression, using a sequence 
of data at the time t=1…40, from the above generated 
time series.  
  Step3: Decide the tolerant zone. 
  Step4: Based on the proposed method, measure the 
number of times when the observed data goes out from 
the tolerance zone for observation data after the time at 
k+1, and detect the structural change point. 
  Step5: Perform the above things repeatedly by M 
times, and calculate the average of the structural change 
point. 

2. Experimental condition  
(i)Tolerant zone: ± 2σ  of the distribution on error ε. 
(ii)The trend 1β  (=b) for the time after t=71:b=0.4. 
(iii)Parameter value of the evaluation function: 
   λ=0.01, and A/a=10,15.  
(iv)Repetition times: M=100. 
(v)Significance level for testing the hypothesis: 
   α=0.05 (in case of Chow Test) 

3. Results 
Results are illustrated in Fig.6 where horizontal axis 

shows observing time t (observation is started after 
t=40).  The vertical axis in left hand shows an 
averaged time point of detected change point, where the 
average is taken from 100 times experimentation. The 
proposed method detects the change point based on the 
beforehand calculated value N that minimizes EC(0,N).  

Although the detection of the change point depends 
on the value of A/a, we expect that the change point will 
be detected around the time at t=70, because the 
structure of the time series is changed at t=70. We have 
verified that the results by the proposed method meet 
our intuition very well.  

However, Fig.6 shows that Chow Test decides the 
change point almost every time when data is observed, 
and detecting change point varies every time when new 
data is observed. This means Chow Test cannot 
correctly detect change point around the time of true 
change point. 
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Fig. 6. Change point detection by the proposed method 
and Chow Test. 

 

IV. CONCLUSION 

We have proposed a sequential processing method 
for structural change point detection of time series data, 
and have presented a formulation as an optimal stopping 
problem using the concept of DP. We have defined an 
evaluation function with an action cost, recursively. In 
addition, we have revealed the optimum solution by 
numerical computation and also have shown some 
experimentation results, where the results meet our 
intuition and well detect the structural change point in 
artificially generated time series data. We also have 
shown that the method is more effective than Chow Test.  

We consider that method is effective, especially in 
the sense that it can quickly detect the change point 
without a priori knowledge of probabilistic distribution 
and that it can be applied to arbitrary prediction model, 
because it is a meta-level one. 
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