
Hardware Circuit for the Application of Evolution Rules in a Transition P-
System

 Víctor Martínez, Santiago Alonso, Abraham Gutiérrez

Natural Computing Group - Universidad Politécnica de Madrid – Madrid
(Tel : +34-91-336-7901; Fax : +34-91-336-7893)

({victormh, salonso, abraham}@eui.upm.es)

Abstract: P systems or Membrane Computing are a type of systems based on biological membranes. Transition P
systems perform computation through transition between two consecutive configurations. One transition is obtained by
applying the evolution rules, which are in each region of the system in a non-deterministic maximally parallel manner.
This paper is part of an investigation line which objective is to implement a hardware system that evolves as it does a
transition P system. To achieve this objective, it has been carried out a division of this generic system in several stages.
The first stage was to determine active rules in a determined configuration for the membrane. The second stage is
developed by obtaining the part of the system that is in charge of the application of the active rules. In fact, the circuit
obtained in this article counts the number of times that the active rules are applied. In first place, the initial
specifications are defined in order to outline the synthesis of the circuit of active rules application. Later on, the design
and synthesis of the circuit will be shown, as well as the operation tests, required to present the experimental results
obtained.

Keywords: Bioinformatics, Membrane Computing, Robotics, Digital Systems.

I. INTRODUCTION

Membrane Computing or P Systems are

computation systems based on the biomolecular

processes of living cells [1]. These systems perform a

computation through transition between two

consecutive configurations by using evolution rules

present in each region. If the system reaches a

configuration in which there are no applicable rules at

any membrane, it is said that the system reaches a

halting configuration and, hence, the computation is

successful.

This article is a part of a project to obtain a hardware

system able to simulate P systems evolution. This

generic system has been divided into several stages. The

first stage develops a FPGA circuit able to determine

active rules in a determined configuration for the

membrane [2] y [3]. In this document, the second stage

is developed: a circuit for the application of the active

rules obtained in the first stage. In general, the

application of the active evolution rules for a region of

an evolution P system is a repetitive process that may be

implemented following different algorithms. A previous

study [4] of the possible positive and negative aspects

each one of these application methods, allows us to

obtain different circuits or systems that differ

complexity level and expense of resources.

The first process to obtain the rules that can be used

in a certain evolution step consists on obtaining the

active rules. From the active rules, we select in a non-

deterministic manner, all the rules that will be applied in

parallel in each one of the regions. The rules also

proceed in parallel to the transformation of the regions

contents and of the own structure of the system sending

objects and, in their case, dissolving membranes. After

the communication and modification of the structure of

membranes of P system has taken place, the system has

evolved from a configuration to another. The process of

application evolution rules in a membrane region is

illustrated in the following sequence of steps:

1. Once the system is initialized, the process starts

up with the loading of the active rules register R
obtained by means of the selection active rules

circuit.

2. In each iteration, one of the active rules ri will

be applied. This rule is aleatorily obtained.

3. The application of the selected rule ri consists

on the subtraction for the initial multiset ω, of

the elements values from the rule antecedent. In

turn, we will increase 1 time the particular

accountant that counts the number of times that

the rule has been applied.

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 262

4. With the new multiset ω’ obtained it is loaded

again in the register R, the new set of active

rules. Every time that the group of active rules

is upgraded, the finish of the process is

controlled. The stop condition is obtained when

the number of active rules is zero. Therefore,

while the cardinal of R is bigger than zero, it

executes a new iteration of the application

process again.

II. HARDWARE CIRCUIT FOR
APPLICATION RULES

A first option to obtain the application of the active

rules consists on the use of an iterative algorithm of

application of the active rules group. In each step of the

algorithm, one active rule is choosing in an aleatory

way, until draining all the possible applications. This

process “step by step” may be considered as the most

immediate and easy to implement, and the Hardware

Circuit for Application Rules presented implements the

different processes from this algorithm. The ultimate

circuit is obtained from the assembly of the different

Functional Units created, along with the control

sequential logic. The sequential logic determines the

evolution of the internal steps that must take place

inside the system until reaching the condition of

shutdown. This condition will occur when the active

rules register is empty. On a simplified way, the main

functional units will be those that implement each one

of the steps of the used algorithm, this is:

1. To obtain the active rules: R ← ActiveRules
2. To choose a single rule randomly:

ri ← Aleatory(R)
3. To update the objects multiset:

ω '← ω − Antecedentri()()()

4. To count the rules implicated: counts(1,ri)

The functional unit that obtains the active rules

consists of a designed, developed and displayed circuit

in [3]. In order to update the objects multiset ω, it must

be decreased as many times as the values of the

antecedent objects of the rule that is being applied

indicate. For it, we address the memory with the

position of the rule to be applied, and a functional unit

of multisets subtraction will obtain the value of the new

updated multiset ω. The subtraction multisets functional

unit must make the subtraction of each pair of elements

mi from each one of the registers that represent the

multiset values.

The sequential controller circuit is in charge of

sequential activation of different units functional, as

well as control of condition of shutdown, that

determines the evolution of the internal steps that must

cross the system. The sequence of events that must

activate the sequential controller generates 4 states. The

account continues of cyclical form until the condition of

shutdown is reached, that will deactivate the accountant.

In the state 0 is loaded objects multiset register ω

present, and is calculated the active rules. In the state 1

is loaded ActiveRules register and obtained one active

rule randomly. In the state 2 is loaded 1 Active Aleatory
Rule register, and is calculated the values of the new

objects multiset and the increase of the accountant of

applied rules. Finally, in the state 3 is loaded ω’ and

AppliedRule registers.

The operation of the obtained circuit is based on the

following process: once the circuit is initialized, with

the load of the initial objects multiset register and the

ROM memory with the evolution rules, the circuit

operation under the supervision of the sequential

controller begins, which will cross the different states

from the system.

The Fig. 1 shows the detailed scheme of the

designed circuit for the rules application. The condition

of shutdown of the circuit by means of a function AND

that detects when there is no rule to apply; and in this

case, disables the sequential controller. The size of the

different elements: registers, memory, connections, etc.

it has been chosen based on the characteristics of the

practical case that will be developed.

III. EXPERIMENTAL RESULTS

Next we will present the complete process of

obtaining the rules to apply on a concrete example of a

transition P-system region. This will allow us to

illustrate the operation of the developed model, as well

as to show the tests to make. The definition, according

to formal annotation, of the membrane system used is in

the expressions and diagram with its structure of

regions:

Π = (V,μ,ω1,...ω4, (R1,ρ1),...,(R4,ρ4),4)
V = {a,b,c,d,e}
μ = [1[2[3]3]2[4]4]1

ω1 = aac

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 263

R1 = {r1: c (c,in4), r2: c (b,in4), r3: a (a,in2)b, r4:
dd (a,in4)}

ρ1 = { r1>r3, r2 > r3}

The circuit to be carried out obtains the region 1

rules to apply. The region 1 input values will be the

objects multiset ω1, the group of rules R1, the priority

relationships among rules ρ1 and the inner adjacent

regions number (two regions in this case). The number

of objects V is 5 with decimal multiplicity (0 - 9),

therefore, we will need 4 bits to represents each object.

And so, a word representing the multiplicity of the 5

objects will occupy 20 bits. The rules group is formed

by 4 rules which will be stored in the device memory.

Each of the 4 rules will be coded with 64 bits. This is,

20 bits for the antecedent, 20 bits for each consequent of

the two inner interior regions, plus 4 remaining bits

used to code the priorities mask of each rule with regard

to the other ones. The rules are stored, therefore, in a

ROM 4x64 bits memory [3].

Like previous step, is due to initialize the system

with the load of the initial objects multiset register:

w_a[3..0] = 2(decimal), w_c[3..0] = 1(decimal), w_b,
w_d, w_e = 0; the inner regions existence indication

bits In1 = 1 (Region 1 Exists), In2 = 1 (Region 2 Exists)
and ROM memory with the evolution rules.

Next they are described with detail the states which

the system goes through until completing the first cycle

of sequence of states:

Cycle 1 of sequence of states: In state 0 the registry

ωi with the present objects multiset is loaded and the

process of calculation of active rules begins. In state 1

the active rules register a1, a2, a3, a4=(1,1,0,0) is

validated, and the calculation of 1 Aleatory Active Rule

is qualified. State 2 been validate the load of the 1
Random Active Rule register r1, r2, r3, r4=(1,0,0,0) for

example, select the information in memory of the rule

that allows to update the values of the present multiset

()((0' rAntecedent−←))ωω , and it is increased the

accountant of applied rules. State 3 the load of the

registry aacaac =−='ω is validated, and the

registry applied rules: ar1, ar2, ar3, ar4=(1,0,0,0).
Cycle 2 of sequence of states: In state 0 the registry

ωi with the present objects multiset is loaded w_a = 2,
w_b, w_c, w_d, w_e = 0; and the process of calculation of

active rules begins. In state 1 is validated the active

rules register a1, a2, a3, a4=(0,0,1,0) and the calculation

of 1 Aleatory Active Rule is qualified. State 2 the load of

the 1 Random Active Rule register r1, r2, r3, r4=(0,0,1,0)
is validated. State 3 is validated the load of the registry

aaaa =−='ω , and the registry applied rules:

ar1,ar2,ar3,ar4=(1,0,1,0).
Cycle 3 of sequence of states: In state 0 the registry

ωi with the present objects multiset is loaded w_a = 1,
w_b, w_c, w_d, w_e = 0; and the process of calculation of

active rules begins. In state 1 the active rules register a1,

a2, a3, a4=(0,0,1,0) is validated, and the calculation of 1
Aleatory Active Rule is qualified. State 2 the load of the

1 Random Active Rule register r1, r2, r3, r4=(0,0,1,0) is

validated. State 3 are validated the load of the registry

0' =−= aaω and the registry applied rules:

ar1,ar2,ar3,ar4=(1,0,2,0).
As we can verify, after 3 complete system evolution

cycles, the process stops because the condition of

shutdown is reached. The obtained result corresponds

with the awaited one: rule 1 must be applied 1 time, and

rule 3 must be applied 2 times. The Fig. 2 shows the

chronogram that illustrates the sequence of states of the

system.

IV. FIGURES

Fig.1. Scheme of the designed circuit.

Fig. 2. Chronogram that illustrates the sequence of
states of the system

V. CONCLUSION

This article presents a way to obtain a circuit

capable to obtain the rules inside the P-system

membrane that must be applied. The operation and

verification of the obtained circuit is shown with a

practical case of membrane system. We can verify like,

from an initial P system configuration, and based on the

external conditions, a satisfactory final result is reached.

The synchronization between the different

functional units that compose the system is controlled

by the sequential controller. It will be necessary to fit

the clock cycles so that the circuit reaches the stable

results within each cycle. The obtained circuit behavior

is based on the evolution rules stored in memory and the

inputs, which correspond with the values of the region

state. If the conditions of the region change, the circuit

modifies its outputs being adjusted to the new values.

This feature is of a supreme importance in order to

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 264

integrate this circuit as a module that works

cooperatively together with other circuits.

This circuit comprises of a complete system that

allows implementing the operation and evolution of a

transition P system. The following step in this line will

be to obtain the way of communication of objects

between regions, which allows building each evolution

step.

REFERENCES

[1] Gh. Păun, Computing with Membranes, Journal of
Computer and System Sciences, 61 (2000), 108-143,
and Turku Center of Computer Science-TUCS Report
No 208, 1998.
[2] Víctor J. Martínez, L.Fernández, F.Arroyo, A.
Gutiérrez. A Hw Circuit for the Application of Active
Rules in a Transition P-System Region. Fourth
International Conference Information Research and
Applications I.TECH 2006. Varna(Bulgaria). Del 20 al
25 de Junio de 2006.
[3] Víctor Martínez, Abraham Gutiérrez, Luis Fernando
de Mingo. Circuit FPGA for Active Rules Selection in a
Transition P System Region. ICONIP 2008 - 15th
International Conference on Neural Information
Processing of the Asia-Pacific Neural Network
Assembly. Auckland, New Zealand November 25-28,
2008 Lecture Notes in Computer Science ICONIP 2008,
Part II, LNCS 5507
[4] L.Fernández, F.Arroyo, J.Castellanos, J.A.Tejedor,
I.García, New Algorithms for Application of Evolution
Rules based on Applicability Benchmarks,
BIOCOMP06 International Conference on
Bioinformatics and Computational Biology, Las
Vegas (USA), july, 2006. Fig. 1

Fig. 2

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 265

