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Abstract. The different viable architectures that implement P-Systems (membrane systems) over distributed cluster of 

processors have a major drawback: the distribution of these architectures in a balanced tree of processors that can 

minimize external communications and maximize the parallelism grade. For a given P-System and K processors, there 

exists a great volume of possible distributions of membranes over these. In a recent paper the feasibility of using Self-

Organizing Neural Networks (SONN) with growing capability to help in the selection process of a distribution for a 

given P-System has been demonstrated, although the nature of two-dimensional patterns used in the study limited the 

possibility of defining more flexible degrees of communication, making more difficult to locate the best distribution. In 

this paper the capacity of Growing Cell Structure (GCS) model of projecting high-dimensional spaces in bi-dimensional 

graphs is explored.  
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I.  INTRODUCTION 

P-Systems, introduced by Păun [1], are a class of 

distributed, massively parallel and non-deterministic 

systems. This model has become, during last years, a 

powerful framework for developing new ideas in 

theoretical computation and connecting the Biology 

with Computer Science. Possibilities offered by P-

Systems for solving NP-problems, in lineal time and of 

course lineal resources, have made researchers 

concentrate their work towards HW and SW 

implementations of this new computational model. 

Nowadays, it is possible to find different viable 

architectures that implements P-Systems in a 

distributed cluster of processors [2]. These proposed 

architectures have reached a certain compromise 

between the massively parallelism character of the 

system and evolution step times. These architectures 

are based in the distribution of several membranes in 

each processor, the use of proxies to control the 

communication between membranes and mainly, the 

suitable distribution of the architecture in a balanced 

tree of processors. All this facts allows obtaining a 

better evolution step time than in others suggested 

architectures congested quickly by the network 

collisions when the number of membranes grows. The 

main problem in these architectures is to find the 

proper distribution of the membranes between 

processors and the definition of a network topology 

that minimizes communication between processors 

without reducing the system parallelization.  

In a previous paper [3], we suggest the use of Self-

Organizing Neural Networks (SONN) with growing 

capability, based in Fritzke work [5], to help in the 

search and selection of the balanced distribution for a 

given P-system, with the purpose of obtaining as a final 

objective the reduction of the run times of each step of 

evolution in a P-System, although the nature of two-

dimensional patterns used in the study limited the 

possibility of defining more flexible degrees of 

communication, making more difficult to locate the 

best distribution. In this paper the capacity of Growing 

Cell Structure (GCS) model of projecting high-

dimensional spaces in bi-dimensional graphs is 

explored. Specifically, we propose a more flexible 

definition of the internal and external communications 

degrees that occur in the processors, which basically 

needs the use of vectors with a dimension greater than 

two. In this case, it is necessary to work with the 

concept of topographic maps of the output layer of the 

GCS network to generate two-dimensional graphics 

that can be used to explore the high-dimensional input 

space. The proposed experiments have presented the 

opportunity of evaluating what kind of information 

about membrane-processor-communication is most 

appropriate in finding the best distribution when using 

the vector projections provided by the GCS network. 

 

II. P SYSTEM COMMUNICATION 

ARCHITECTURES 

The viable architectures that implements P-Systems in 

a distributed cluster of processors are based on the 

following:  

Membranes distribution: In each processor, K 

membranes are located that will evolve, at worst, 

sequentially. The value of K is determined by the 

relation between the number of membranes M and 

processors P, where K ≥ 1. The benefit obtained is that 

the number of the external communications decreases. 

The total number of communications splits in two 

classes: a group of internal communications for pairs of 
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membranes located in the same processor (the run time 

to carry out the internal communications will be 

negligible) and another group of external 

communications to interchange information among 

pairs of membranes located in different processors.  

Proxy for processor: When a membrane wants to 

communicate with another one located at a different 

processor, the first one uses a proxy (programs or 

device located in the processor that carries out an 

action in representation of another), instead of doing it 

directly. This intermediate element located between the 

bus and the membranes concentrates and reduces the 

information that must be reported.  

Tree topology of processors: The benefit obtained 

with the tree topology of processor is that it minimizes 

the total number of external communications made as 

the proxies interchange information only with its direct 

predecessor and its direct successors, and therefore the 

total number of external communications for P 

processors in each evolution step is 2(P − 1).  

Fig.1. (a) P-System communications. (b) 

Communications with membranes distribution (c) 

Communications with a proxy for processor. (d) 

Communications using a tree topology 

 

III. FRITZKE’S GROWING CELL 

STRUCTURES (GCS) 

Self-Organizing Map (SOM) is an artificial neural 

network model with competitive and unsupervised 

training. SOM network has two main characteristics: it 

makes possible obtaining a simplified model of the 

training data (normally high-dimensional) and it has 

the capacity to project them on a two dimensional map 

that shows the existing relations among them. In 1982, 

Kohonen [4] proposed first model of SOM, where the 

complete network structure had to be specified in 

advance and remained static during all the training 

process. In 1994, B. Fritzke [5] proposed a SOM model 

called Growing Cell Structure (GCS) where this static 

structure limitation was eliminated.  

GCS is a two-layer architecture network. Neurons 

located at the input layer are fully connected with those 

in the output one. These connections have associated a 

weight, wij, where i identify the input neuron and j the 

output one. There exist as many input neurons as 

dimension has the input vectors. Neurons in the output 

layer have neighbor connections between them 

presenting a topology formed by groups of basic k-

dimensional hyper-tetrahedrons structures. In order to 

facilitate the visualization of the output layer, in this 

work a value of k=2 has been used.  

Every output c unit has an n-dimensional synaptic 

vector wc = (w1c, …, wnc) associated. This vector can be 

seen as the position of c in the input vector space. Each 

time a new input pattern e = (e1, …, en) is processed, 

only one output neuron is activated, called the best 

matching unit (bmu), that is the one with the synaptic 

vector that matches best with the input pattern. 

Formally: 

            (1) 

 

Thereby ǁ ·ǁ  denotes the Euclidean vector norm. 

By this the input vector space is partitioned into a set 

of regions, each consisting of the locations having a 

common nearest synaptic vector.  This way, the set of 

all synaptic vectors of the output layer can be seen as a 

simplified model of the input vector space.  

The training phase in GCS network adapts synaptic 

vectors looking for that each output neuron represents a 

group of similar input patterns. At the beginning of the 

training phase the output layer of the network has only 

three neurons interconnected via neighbor relations 

(k=2). During the training process a set of input 

patterns is presented to the network iteratively. In each 

adaptation step an input pattern is processed, the bmu is 

calculated and its synaptic vector and its topological 

neighbor’s synaptic vectors are modified using 

equations 2 and 3 respectively (where εb > εn).  

             (2) 

 

 (3) 

 

After a fixed number of adaptation steps a new 

output unit is inserted and is connected to other cells in 

such a way that the triangular groups of neighbor units 

are guaranteed. Periodically superfluous neurons are 

removed in order to obtain better results when input 

space consists of several separate regions of positive 

probability density. A constant threshold, η, is used to 

eliminate those neurons with probability density below 

this value. The removal process ensures the triangular 

architecture of the output layer, but the output neighbor 

mesh can results broken in several sub-meshes. In this 

work the modification of the GCS training algorithm 

proposed in [6] has been used in order to achieve a 

better interpretation of the removal parameters.  

In a trained network the output layer map can be 

seen as a projection of the input vector space in a bi-

dimensional plane that exhibits the relations of the 
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input patterns. Printing the output layer map, called 

topographic map, data inherent knowledge can be 

discovered. As it has been exposed previously, when 

k=2 architecture factor is used, the GCS output layer is 

organized in groups of interconnected triangles. In 

spite of bi-dimensional nature of these meshes, it is not 

obvious how to embed this structure into the plane. In 

this paper the projection technique exposed in [7] has 

been used to generate the topographic map. Using this 

methodology, traditional Kohonen visualization 

methods can be implemented using GCS networks. The 

following GCS visualization methods have been used: 

distance map, Unified map (U-map), distance addition 

map, and component planes [7].   

 

IV. EXPERIMENTS AND RESULTS 

Several experiments have been carried out to 

validate GCS networks as a tool to help in discovering 

the best membrane distribution over a set of processor 

in a concrete P-System. In particular, thirty P-System 

models generally used in the literature of P-System 

have been employed in this study. Several membrane 

distributions between a concrete number of processors 

(calculated using eq. 5) have been generated for every 

P-System, observing how the resulting 

communications of the distribution affect to the 

parallelization grade. A great volume of GCS networks 

have trained using this information with the intention 

of visualize the output layer and establish the optimal 

distribution, which will be the one that balances the 

degrees of external communications and 

parallelization. 

The minimal execution time of a complete P-System 

[2] is expressed in the formula: 

.222min comcomapl TTTMT  (4) 

Where Tapl is the maximum time used by the slowest 

membrane in applying its rules, Tcom is the maximum 

time used by the slowest membrane for 

communication, and M is the number of membranes. 

The optimal number of processors that minimizes the 

execution time of a complete P-System is calculated 

by: 

.
2 com

apl

opt
T

TM
P

 (5) 

For each P-System three families of data have been 

generated. The first consists of one vector for 

membrane-processor-distribution, where each one 

maintains the degree of internal and external 

communications that generates one specific membrane 

in a concrete processor for one of the combinations. In 

this case vectors are bi-dimensional, and for a 

particular combination there exists as many vectors as 

membranes has the P-System. In this first family of 

data each vector is labeled with a string that identifies i 

membrane, j processor, and k combination (MiPjCk). In 

the second group of data a vector by combination has 

been generated, whose dimension corresponds with the 

double of existing membranes. For each membrane the 

degrees of internal and external communications are 

included in the corresponding vector. In this case each 

pattern is labeled only with the k combination that 

represents (Ck). Finally, the third group of data consists 

of a vector for processor-distribution, which includes 

six components that maintain different levels (high, 

medium and low) of internal and external 

communication obtained using fuzzy logic. Each 

vector is labeled to identify the j processor and the k 

combination (PjCk). 

The goal we seek training a GCS network with any 

of these three groups of data is to obtain an 

arrangement of the vectors that allows us to analyze 

graphically, using topographic maps, the volume of 

internal and external communications that take place 

for each combination, been able to determine the best 

that balances the degree of parallelization and external 

communications. After the training phase the output 

units of the GCS network can be labeled with the union 

of the tags of all those input patterns that fall inside its 

Voronoi region. For space reasons this section only 

shows some of the experiments and results obtained for 

a particular P-System (Fig. 1a) which consists of 12 

membranes. Fifteen feasible combinations, which 

fulfill the condition of tree topology of processors, of 

12 membranes have been generated for 4 processors 

(the optimal number calculated by eq. 6). The volume 

of communications produced by membranes is not 

homogeneous. Using the 15 combinations three 

families of data previously described have been 

created. For the first group, each pair of internal-

external communication of a membrane forms a vector 

(altogether there are 180 vectors). For the second group 

there are 15 vectors of 24 dimensions. Finally, the last 

family of data has been generated using fuzzy logic 

values to define 15 vectors of 6 dimensions for each 

processor. 

Using these three sets of data several GCS networks 

have been trained. The common learning parameters 

used in all the experiments are: LEAE insertion 

criterion, εb = 0.06 (bmu adaptation rate), εn = 0.002 

(bmu neighbor adaptation rate), λ=1 epoch (number of 

iterations to insert a new unit). The only varying factor 

involving experiments is related with the concluding 

condition of the training process, fulfilled when the 

output layer gets a specific number of output units or 

when at least an explicit number of isolated clusters of 

output units are obtained.  For the first, a removal 

threshold µ = 0 has been used, and for the last a value 

of µ=0.0006. 

Figure 2 shows the scattergram of a GCS network, 

trained with the first group of bi-dimensional data 

(concluded when at least 6 isolated clusters of output 

units are obtained), where the position of each output 

unit is determined by the two components of its 

synaptic vector (lines between points represents the 

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 259



output layer neighbor connections). X-axis coordinates 

indicates the internal degree of communications and Y-

axis the external one. We have grouped the neurons 

into three classes: bad (from 1 to 11), medium (from 14 

to 18) and good (from 19 to 28). Within each of these 

three groups we have ordered neurons from highest to 

lowest level of external communication and for those 

with a similar value, from highest to lowest level of 

internal communication. Based on this information has 

been determined that the best distribution is the C13, 

that contains 1 bad neuron, 4 medium neurons and 7 

good neurons. Moreover, this distribution has one of 

the best ratios of communication. 

 
Fig.2. Scattergram of the GCS network trained with bi-

dimensional patterns. Points represent neurons and 

lines between them neighbor connections.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. GCS network trained with 24-dimensional 

vectors. a) Distance map. b) U-map. c) Distance 

addition map. d) Labeled topographic map. e) 

Component planes. 

Figure 3 includes some of the topographic maps of 

the GCS network trained with the 24-dimensional data. 

In this experiment, the learning concluding condition 

was determined when the output layer got 20 output 

units. Distance map, U-map, Distance addition map 

and labeled topographic map show certain grade of 

clustering associated with the patterns C2, C3, C5, C7, 

C8, C10, C14 and C15,  C11 with C12, C4 with C9, 

and finally, C1, C6 and C13 seems to be isolated. 

Component planes in the first and second rows show 

the internal and external communications associated to 

the membranes 1 to 12 from left to right, respectively, 

where black color represents low values. The high 

dimension of the vectors make no easy to find the 

combination that better minimizes the degree of 

external and internal communications. The C13 

combination that results the better one in the previous 

experiment, continues showing good characteristics, 

although the C1 or C6 is perhaps better. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. GCS network trained with 6-dimensional 

vectors. a) Labeled topographic map. b) Component 

planes. 

 

Finally, Figure 4 shows the information of the GCS 

network trained with the third set of data (concluded 

when at least 6 isolated clusters of output units are 

obtained). In this network only 6 component planes 

exist, simplifying its visual analysis. Component planes 

in the first row show the high, medium and low 

internal communications and the high, medium and 

low external communication appear in the second one, 

(a) (b) 

(c)   (d) 

(e) 

(a) 

(b) 
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where black color represents low values. The two 

clusters in the upper left are the worst external 

communications high, medium and low show 

(although the grades for internal communications are 

good). The two clusters below on the left offer good 

levels of external communications, but they have the 

worst internal communications levels. The two 

remaining clusters get the best ratios by minimizing 

both types of communications. Each of the 15 

combinations consists of 4 patterns (one per processor).  

The combination that has more patterns in the two best 

clusters is the C13 again (it has 3 out of 4).  

With the first set of data the problem that arises in 

searching the best distribution is the dispersion of the 

vectors that compose a concrete combination of 

membranes by processor. Although this example is 

relatively simple, with only 12 membranes, it lets 

patent the complication to determine which the best 

distribution is. With respect to the second data set, 

although it solves the previous problem because there 

only exists a single vector by combination, the high 

dimension of the input space makes difficult the 

component plane analysis. The third data set raises a 

commitment between the first two sets, presenting so 

many vectors by combination as processors exist. The 

volume of processors is not usually high, because it 

would increase the volume of external 

communications, making easy to find in the graphs all 

the patterns associated to a concrete combination. On 

the other hand, the dimension of these vectors 

facilitates the analysis of the component planes. 

 

V. CONCLUSIONS 

GCS networks have demonstrated to be a useful tool 

to P-System in the searching of membrane balanced 

distributions. Although the example that has been used 

to document the methodology has a small volume of 

membranes, the feature of simplified model associated 

to GCS networks allows working with high volumes of 

membranes where the distribution possibilities go off.  

The analysis of the information of a GCS network 

could be automated for feeding a system of automatic 

membrane distribution over processors. In particular, 

this tool is being adapted to be used in the distributed 

system of membranes based on microcontrollers 

exposed in [8][9]. 

The experiments have showed that the input patterns 

family that better display a P-System communication 

information is the third, where for a given combination 

four patterns are generated to describe a fuzzy 

characterization of the internal and external 

communications produced in a particular processor for 

a specific combination.   
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