Towards natural intelligence modeling as a formal system based on Mental Image Directed Semantic Theory (Part 2)

Masao Yokota, Taiki Tometsuka, Rong Zhao, Kaoru Sugita and Tetsushi Oka
Fukwoka Institute of Technology. 3-30-1 Wajiro-higashi, Higashi-kw, Fukwoka-shi, 811-0295, Japan
(Tel : 81-92-606-5897; Fax : 81-92-606-8923)
(yokota@fit.ac.jp)

Abstract

Yokota, M. has proposed his original semantic theory "Mental Image Directed Semantic Theory (MIDST)" and has been challenging to model natural intelligence as a formal system. This paper presents a brief sketch of the attempt on systematic representation and computation of subjective spatiotemporal knowledge based on certain hypotheses of mental image in human.

Keywords. Natural language, Multimedia understanding, Robotic sensation and action.

I. INTRODUCTION

Another paper of ours for this session [1] presents the fundamentals of the formal system for natural intelligence and how to formalize mental operations and natural concepts within it. The formal system consists of the formal language $L_{n n}$ [1] and the deductive system. The latter is based on the deductive apparatus for predicate \log ic and is to be provided with postulates concerning human empirical knowledge of space and time as well. This paper focuses on systematic formalization of human empirical knowledge pieces of space and time as postulates for the deductive system and its application to natural language understanding (NLU) for spatiotemporal expressions.

II. PROVISION OF POSTULATES

The deductive system must be as well provided with knowledge pieces in order to solve certain problems in its world or task domain. Such knowledge pieces as called "postulates" here stand for human intuitive laws of the world and are to be treated as equivalents to axioms. Those presented below concern exclusively space and time in order for spatiotemporal language understanding.

1. Fundamental Properties of Locus

The postulates P1 and P2 state that a matter never has different values of an attribute with a standand at a time. These are called "Postulates of Identity in Assigned Values". P1 is employed exclusively to detect semantic anomaly in such a sentence as "The red box is black" while P2 is useful to detect event gaps in such a context as "Tom was in London yesterday and he is in Paris today."

The syntax of $L_{\text {rof }}$ allows Matter terms to appear at Values and Standard in order to represent their values in each place at the time and over the time-interval, respectively. This rule can be formulated as P3 and P4 The postulate P3 is to be utilized for such inference as
"Mary went to Tom when he was in the garden Therefore, Mary went to the (same) garden." while $\mathbf{P} 4$ is for such inference as "Jim is taller than Tom. Tom is 2 m tall. Therefore, Jim is taller than 2 m ."

P1. $L\left(x, y, p_{1}, q_{1}, a, g, k\right) \Pi L\left(z, y, p_{2}, q_{2}, a, g, k\right)$
$\supset \mathrm{p}_{1}=\mathrm{p}_{2} \wedge \mathrm{q}_{1}=\mathrm{q}_{2}$
P2. $L\left(x, y, p_{1}, q_{1}, a, g, k\right) \cdot L\left(z, y, p_{2}, q_{2}, a, g, k\right)$
$\xrightarrow{2} q_{1} \neq p_{2}$
P3. $L\left(x_{0}, y, z_{1}, z_{2}, a, g_{, ~, ~}\right) \Pi \Pi\left(x_{1}, z_{1}, p_{1}, q_{1}, a_{2}, k\right) \Pi$
$L\left(x_{2}, z_{2}, p_{2}, q_{2}, a, g, k\right) \neg_{0} L\left(x_{0}, y, p_{1}, q_{2}, a, g, k\right)$
P4. $L\left(\mathrm{x}_{0}, \mathrm{y}, \mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{a}, \mathrm{g}, \mathrm{z}\right) \Pi\left(\mathrm{x}_{\mathrm{i}}, \mathrm{z}, \mathrm{q}, \mathrm{q}, \mathrm{a}, \mathrm{g}, \mathrm{k}\right)$

$$
\partial_{0} L\left(x_{0}, y, p_{1}, p_{2}, a, g, q\right)
$$

It is quite subjective how to articulate a locus. For example, whether the point ($\left.\mathrm{t}_{2}, q\right)$ in Fig. 1-a is significant or not so as in Fig. 1-b, more generally, locus articulation depends on the precisions or the granularities of these standards, which can be formulated as P5 and P6, so called, Postulater of Arbitrariness in Locus Articulation

```
P5. (|p,q,r,k)(\existsk')L(y,x,p,q,ag,k)+L(y,x,q,\mp@code{,ag,k)}
    O0.L(y,x.p,ragk'Mk'\not=k
P6. (vp,r,k) (\existsq, k}\mp@subsup{)}{}{\prime}L(y,x,p,r,a,g,k)=0
    L(y,x,p,q,a,g,\mp@subsup{k}{}{\prime})L(y,x,q,a,g,\mp@subsup{k}{}{*})|\mp@subsup{k}{}{\prime}\not=k
```

These postulates affect the process of conceptualization on a word based on its referents in the world and moreover they are very useful for spatiotemporal inference in such a context as "Tom flied from Tokyo to Nagoya and consecutively from Nagoya to Osaka. Therefore, be moved from Tokyo to Osaka" or "Tom moved from Tokyo to Osaka. Therefore, he passed somewhere (between the two places)".

Fig.1. Arbitrariness in locus articulation due to standards: Standard $k_{1}(\mathrm{a})$ is finer than $k_{2}(\mathrm{~b})$.

2. Perception of Time

A perceptual locus can be formulated with atomic locus formulas and temporal conjunctions such as SAND (\wedge_{0} or Π) and CAND (\wedge_{1} or \bullet). This is not necessarily the case for a conceptual locus corresponding to such a generalized mental image or knowledge piece. For example, people usually interpret the construction B happens before A happens' as a general causality, namely, as 'If A happens, B happens in advance'. Whereas this should be formulated with logical connectives other than conjunctions also involved, D1 [1] is exclusively for perceptual loci so far as it is because there is no interpreting a negated locus formula as a locus with a unique time-interval necessary to determine a unique temporal relation τ_{i}.

Considering such a definition as ' $\mathrm{A} \supset \mathrm{B} \Leftrightarrow \sim \mathrm{A} \vee \mathrm{B}$ (. $\equiv . \sim(A \wedge \sim B))^{\prime}$ in standard logic, it is not unnatural to assume the identity of a locus formula with its negative in absolute time-interval, that is, negation-freeness of absolute time passing under a locus referred to by its suppressed absolute time-interval. Therefore, in order to make D1 valid also for conceptual loci, we introduce a meta-function δ defined by D5 and its related postulates $\mathbf{P} 7$ and $\mathbf{P 8}$ as follows, where δ is to extract the suppressed absolute interval of a locus formula χ.

D5. $\quad \delta(\chi)=\left[\mathrm{t}_{\mathrm{a}}, \mathrm{t}_{\mathrm{b}}\right](\in \Delta)$
where $\chi \Pi \varepsilon\left(\left[\mathrm{t}_{\mathrm{a}}, \mathrm{t}_{\mathrm{b}}\right]\right)$.
P7. $\delta(\sim \alpha)=\delta(\alpha)$
where α is an atomic locus formula.
P8. $\quad \delta(\chi)=\left[\mathrm{t}_{\text {min }}, \mathrm{t}_{\text {max }}\right]$
where $t_{\text {min }}$ and $t_{\text {max }}$ are respectively the minimum and the maximum time-point included in the absolute time-intervals of the atomic locus formulas, either positive or negative, within χ.

These postulates lead to $\mathbf{T 1}$ (Theorem of absoluteness of time passing (or negation-freeness of absolute time passing)) below. This theorem can read that absolute time passes during an objective event whether it may be perceived subjectively as χ or as $\sim \chi$.

T1. $\delta(\sim \chi)=\delta(\chi)$

(Proof)

According to P5 and P6, the time-interval of each atomic locus formula involved in χ is negation-free and therefore so is for $\left[t_{\text {min }}, t_{\text {max }}\right]$ of $\delta(\chi)$. [Q.E.D.]

The counterpart of the contrapositive in standard logic (i.e. $\mathrm{A} \square \mathrm{B} . \equiv . \sim \mathrm{B} \supset \sim \mathrm{A}$) is given as $\mathbf{T 2}$ (Tempological Contrapositive) whose rough proof is as follows immediately below, where the left hand of ' \because ' refers to the theses (e.g., $\mathbf{P L}$ is a subset of those in pure predicate logic) employed at the process indicated by the conventional meta-symbol ' \rightarrow ' or ' \leftrightarrow ' for entailment (left-to-right or bi-directional).

T2. $\chi_{1} \supset_{i} \chi_{2} . \equiv . \sim \chi_{2} \supset_{-i} \sim \chi_{1}$

(Proof)

$$
\begin{array}{ll}
\text { D1: } \chi_{1} \supset \chi_{2} \leftrightarrow\left(\chi_{1} \supset \chi_{2}\right) \wedge \tau_{i}\left(\chi_{1}, \chi_{2}\right) \\
\text { PL: } & \leftrightarrow\left(\sim \chi_{2} \supset \sim \chi_{1}\right) \wedge \tau_{\mathrm{i}}\left(\chi_{1}, \chi_{2}\right) \\
\text { T1: } & \leftrightarrow\left(\sim \chi_{2} \supset \sim \chi_{1}\right) \wedge \tau_{\mathrm{i}}\left(\sim \chi_{1}, \sim \chi_{2}\right) \\
\text { D1: } & \leftrightarrow\left(\sim \chi_{2} \supset \sim \chi_{1}\right) \wedge \tau_{-i}\left(\sim \chi_{2}, \sim \chi_{1}\right) \\
\text { D1: } & \leftrightarrow \sim \chi_{2} \supset-i \sim \chi_{1} \quad \text { [Q.E.D.] }
\end{array}
$$

Therefore, S1 and S2 are proved to be paraphrases each other by employing T2 while S3 and S4 are proved so by the definition of tempological conjunctions (i.e. \wedge_{i}).
(S1) It gets cloudy before it rains.
$=$ If it rains, it gets cloudy in advance. (\equiv Raining \supset_{-5} Getting_Cloudy)
(S2) It does not rain after it does not get cloudy.
$=$ Unless it gets cloudy, it does not rain later. ($\equiv \sim$ Getting_Cloudy $\supset_{5} \sim$ Raining $)$
(S3) It got cloudy before it rained. (\equiv Raining \wedge _-5 Getting_Cloudy)
(S4) It rained after it got cloudy.
($=$ Getting_Cloudy \wedge_{5} Raining)
3. Reversibility of Spatial Event

As already mentioned in [1], all loci in attribute spaces are assumed to correspond one to one with movements or, more generally, temporal events of the FAO. Therefore, the $\boldsymbol{L}_{\boldsymbol{m} \boldsymbol{d}}$ expression of an event is compared to a movie film recorded through a floating camera because it is necessarily grounded in FAO's movement over the event. And this is why S5and S6 can refer to the same scene in spite of their appearances, where what 'sinks' or 'rises' is the FAO as illustrated in Fig. 2 and whose conceptual descriptions are given as (1) and (2), respectively, where ' A_{13} ', ‘ \uparrow ' and ' \downarrow ' refer to the attribute 'Direction' and its values 'upward' and 'downward', respectively.
(S5) The path sinks to the brook.
(S6) The path rises from the brook.

$$
\begin{gather*}
(\exists \mathrm{y}, \mathrm{zp}) \mathrm{L}\left(_, \mathrm{y}, \mathrm{p}, \mathrm{z}, \mathrm{~A}_{12}, \mathrm{G}_{\mathrm{s}}, _\right) \Pi \\
\mathrm{L}\left(, \mathrm{y}, \downarrow, \downarrow, \mathrm{~A}_{13}, \mathrm{G}_{\mathrm{s}}, _\right) \wedge \operatorname{path}(\mathrm{y}) \wedge \operatorname{brook}(\mathrm{z}) \wedge \mathrm{z} \neq \mathrm{p} \tag{1}\\
(\exists \mathrm{y}, \mathrm{z}, \mathrm{p}) \mathrm{L}\left(_, \mathrm{y}, \mathrm{z}, \mathrm{p}, \mathrm{~A} 12, \mathrm{G}_{\mathrm{s}},\right) \Pi \\
\mathrm{L}\left(, \mathrm{y}, \uparrow, \uparrow, \mathrm{~A}_{13}, \mathrm{G}_{\mathrm{s}}, _\right) \wedge \operatorname{path}(\mathrm{y}) \wedge \operatorname{brook}(\mathrm{z}) \wedge \mathrm{z} \neq \mathrm{p} \tag{2}
\end{gather*}
$$

Such a fact is generalized as P9 (Postulate of Reversibility of Spatial Event (PRS)), where χ_{3} and $\gamma_{3}{ }^{\text {R }}$ are a perceptual locus and its 'reversal' for a certain spatial event, respectively, and they are substitutable with each other because of the property of \leftrightharpoons)' This postulate can be one of the principal inference rules belonging to people's common-sense knowledge about geography.

$$
\text { P9. } \quad x_{2}{ }^{2}=x_{0} x_{x}
$$

This postulation is also valid for such a pair of S7 and S8 as interpreted approximately into (3) and (4), respectively. These pairs of conceptual descriptions are called equivalent in the PRS, and the paired sentences are treated as paraphrases each other.
(S 7) Route A and Route B meet at the city.
(S8) Route A and Route B separate at the city
$(\exists \mathrm{p}, \mathrm{y}, \mathrm{q})$ <, Route_A,p,y, $\left.\mathrm{A}_{12}, \mathrm{G}_{8},-\right) \Pi$
$\mathrm{L}\left(\right.$, Route_B, $\mathrm{q}, \mathrm{y}, \mathrm{A}_{12}, \mathrm{G}_{2,}$, Mcity $(\mathrm{y}) \wedge \mathrm{p} \neq \mathrm{q}$
$(\exists \mathrm{p}, \mathrm{y}, \mathrm{q})$ (, Route_A,y, $\left.\mathrm{p}, \mathrm{A}_{12,}, \mathrm{G}_{8}, \ldots\right) \Pi$
L(,Route_B,y, $\mathrm{q}, \mathrm{A}_{12}, \mathrm{G}_{4,}$, Mcity $(\mathrm{y}) \wedge \mathrm{p} \neq \mathrm{q}$

Fig2. Slope as spstial event.

4. Partiality of Matter

Any matter is assumed to consist of its parts in a structure (i.e. spatial event), which is generalized as P10 (Postulate of Partiality of Matter) bere. For example, Fig. 3 shows that an ISR x can be deemed as a complex of ISRs x_{2} and x_{8}. This postulate, in cooperation with P9. is utilized for translating such a paradoxical sentence as "The Andes Mountains rum north and south." into such a plausible interpretation as "One part of the Andes Mountains runs north (from somewhere) and the other part runs south"

P10.
$L\left(y, M, p, q, A, Q_{3}, k\right) \bullet L\left(y, x_{1}, q, T, a, Q_{3}, k\right)$

1SR: imagimary space regiow

Fig 3. Partiality of ISR.

III. APPLICATION TO NLU

Our intelligent system IMAGES-M [1] can translate systematically natural language and $L_{\text {nad }}$ expression into each other by utilizing syntactic rules and word meaning descriptions of natural language.
A word meaning description M_{w} is given by (5) as a pair of 'Concept Part ($\left.C_{p}\right)^{\prime}$ and 'Unification Part $\left(U_{p}\right)$ '

$$
\begin{equation*}
M_{w} \Leftrightarrow\left[C_{p} \cdot U_{p}\right] \tag{5}
\end{equation*}
$$

The C_{g} of a word W is a locus formula about properties and relations of the matters involved such as shapes, colors, functions, potentialities, etc while its U_{p} is a set of operations for unifying the $C_{p} s$ of $W \mathrm{~F}$ syntactic govermors or dependents. For example, the meaning of the English verb 'carry' can be given by (6).
$\left[\left(\exists \mathrm{xy}, \mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{k}\right) \mathrm{L}\left(\mathrm{xx}, \mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~A}_{12}, \mathrm{Gt}, \mathrm{k}\right) \Pi\right.$
$L\left(x, y, p_{1}, p_{2}, A_{12}, G t k\right) \cap x \neq y \wedge p_{1} \neq p_{2}: A R G\left(D e p l_{1} x\right)$,
ARG(Dep. 2,y);]
The U_{p} above consists of two operations to unify the first dependent (Dep.1) and the second dependent (Dep.2) of the current word with the variables x and y, respectively. Here, Dep. 1 and Dep. 2 are the 'subject' and the 'object' of 'carry', respectively. Therefore, the surface structure 'Mary carries a book' is translated into the conceptual structure (7) via the surface dependency structure shown in Fig.4. This process is completely reversible.
($\left.\exists \mathrm{y}, \mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{k}\right)$ (Mary, Mary, $\left.\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~A}_{12}, \mathrm{O}, \mathrm{k}\right) \Pi$
L(Mary, y, $\left.\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~A}_{12}, \mathrm{Gt}, \mathrm{k}\right) \wedge$ Mary $\neq \mathrm{y}$
$\wedge \mathrm{p}_{1} \neq \mathrm{p}_{2} \wedge$ book (y)
For another example, the meaning description of the English preposition 'through' is also given by (8).
$\left[\left(\exists x y, p_{1} z_{1} p_{3}, g_{k}, p_{4}, k_{0}\right)\left(L\left(x y y_{1}, z A_{12} g, k\right)\right.\right.$
$L\left(x y \not z_{1} p_{3}, A_{12, g, k}\right)>\Pi L\left(x y, p_{4}, p_{4}, A_{13}, g_{k}\right)$
$\wedge \mathrm{p}_{1} \neq \mathrm{Z} \wedge \neq \mathrm{p}_{3}: A R G($ Dep. 1,2$)$;
$\mathrm{IF}(\mathrm{Oov}=\mathrm{Verb}) \rightarrow \operatorname{PAT}(\mathrm{Gov},(1,1))$;
IF $(G o v=N o u n) \rightarrow A R G(G o v, y) ;]$

(\cdot y, p1,p2,k)L(Mary,Mary,p1,p2,A12,Gt,k) \cdot L(Mary,y,p1,p2,A12,Gt,k) • Mary y y p1 \cdot p2 $2 \cdot$ book(y)

Fig.4. Mutual translation between text and $L_{\text {md }}$
The U_{p} above is for unifying the $C_{p} s$ of the very word, its governor (Gov, a verb or a noun) and its dependent (Dep.1, a noun). The second argument (1,1) of the command PAT indicates the underlined part of (9) and in general e, j) refers to the partial formula covering from the i th to the f th atomic formula of the current C_{p}.

This part is the pattern common to both the $C_{p} \mathrm{~s}$ to be unified. This is called 'Unification Handle (U_{h})' and when missing, the $C_{p} \mathrm{~s}$ are to be combined simply with ' \wedge '. Therefore the sentences S9, S10 and S11 are interpreted as (9), (10) and (11), respectively. The underlined parts of these formulas are the results of PAT operations. The expression (12) is the C_{p} of the adjective 'long' implying 'there is some value greater than some standard of 'Length $\left(\mathrm{A}_{02}\right)$ ' which is often simplified as (12').
(S9) The train runs through the tunnel.

$$
\begin{align*}
& \left(\exists \mathrm{x}, \mathrm{y}, \mathrm{p}_{1}, \mathrm{z}, \mathrm{p}_{3}, \mathrm{k}, \mathrm{p}_{4}, \mathrm{k}_{0}\right)\left(\underline{\mathrm{L}\left(\mathrm{x}, \mathrm{y}, \mathrm{p}_{1}, \mathrm{z}, \mathrm{~A}_{12}, \mathrm{Gt}, \mathrm{k}\right) \bullet}\right. \\
& \left.\mathrm{L}\left(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{p}_{3}, \mathrm{~A}_{12}, \mathrm{Gt}, \mathrm{k}\right)\right) \Pi L\left(\mathrm{x}, \mathrm{y}, \mathrm{p}_{4}, \mathrm{p}_{4}, \mathrm{~A}_{13}, \mathrm{Gt}, \mathrm{k}_{0}\right) \\
& \wedge \mathrm{p}_{1} \neq \mathrm{z} \wedge \mathrm{z} \neq \mathrm{p}_{3} \wedge \operatorname{train}(\mathrm{y}) \wedge \operatorname{tunnel}(\mathrm{z}) \tag{9}
\end{align*}
$$

(S10) The path runs through the forest.

$$
\begin{align*}
& \left(\exists \mathrm{x}, \mathrm{y}, \mathrm{p}_{1}, \mathrm{z}, \mathrm{p}_{3}, \mathrm{k}, \mathrm{p}_{4}, \mathrm{k}_{0}\right)\left(\underline{\mathrm{L}\left(\mathrm{x}, \mathrm{y}, \mathrm{p}_{1}, \mathrm{z}, \mathrm{~A}_{12}, \mathrm{Gs}, \mathrm{k}\right) \bullet}\right. \\
& \left.\mathrm{L}\left(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{p}_{3}, \mathrm{~A}_{12}, \mathrm{Gs}, \mathrm{k}\right)\right) \Pi \mathrm{L}\left(\mathrm{x}, \mathrm{y}, \mathrm{p}_{4}, \mathrm{p}_{4}, \mathrm{~A}_{13}, \mathrm{Gs}, \mathrm{k}_{0}\right) \\
& \wedge \mathrm{p}_{1} \neq \mathrm{z} \wedge \mathrm{z} \neq \mathrm{p}_{3} \wedge \operatorname{path}(\mathrm{y}) \wedge \text { forest }(\mathrm{z}) \tag{10}
\end{align*}
$$

(S11) The path through the forest is long.
($\left.\exists \mathrm{x}, \mathrm{y}, \mathrm{p}_{1}, \mathrm{z}, \mathrm{p}_{3}, \mathrm{x}_{1}, \mathrm{k}, \mathrm{q}, \mathrm{k}_{1}, \mathrm{p}_{4}, \mathrm{k}_{0}\right)$
$\left(\mathrm{L}\left(\mathrm{x}, \mathrm{y}, \mathrm{p}_{1}, \mathrm{z}, \mathrm{A}_{12}, \mathrm{Gs}, \mathrm{k}\right) \bullet \mathrm{L}\left(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{p}_{3}, \mathrm{~A}_{12}, \mathrm{Gs}, \mathrm{k}\right)\right)$
$\Pi L\left(\mathrm{x}, \mathrm{y}, \mathrm{p}_{4}, \mathrm{p}_{4}, \mathrm{~A}_{13}, \mathrm{Gs}, \mathrm{k}_{0}\right) \wedge \mathrm{L}\left(\mathrm{x}_{1}, \mathrm{y}, \mathrm{q}, \mathrm{q}, \mathrm{A}_{02}, \mathrm{Gt}, \mathrm{k}_{1}\right)$
$\wedge p_{1} \neq \mathrm{z} \wedge \mathrm{z} \neq \mathrm{p}_{3} \wedge \mathrm{q}>\mathrm{k}_{1} \wedge$ path $(\mathrm{y}) \wedge$ forest (z)

$$
\begin{equation*}
\left(\exists \mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{q}, \mathrm{k}_{1}\right) \mathrm{L}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{q}, \mathrm{q}, \mathrm{~A}_{02}, \mathrm{Gt}, \mathrm{k}_{1}\right) \wedge \mathrm{q}>\mathrm{k}_{1} \tag{11}
\end{equation*}
$$

$\left(\exists \mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{k}_{1}\right) \mathrm{L}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right.$, Long,Long, $\left.\mathrm{A}_{02}, \mathrm{Gt}, \mathrm{k}_{1}\right)$
For simplicity, we have recently employed such a format for text meaning representation as shown in Table 1, so called, 'Discourse Image Tree (DIT)'. This table represents the meaning of S12 where all the formulas are expressed in Polish notation. In general, the leaves of a DIT consist of atomic locus formulas, labeled as ' L_{n} ', and connectives such as CANDs and SANDs. Table 2 shows the DIT for S13.

Table 1*. Discourse Image Tree of S12

Discourse Image	$\mathbf{D}_{\mathbf{1}}=\wedge \mathbf{S}_{\mathbf{1}} \mathbf{S}_{\mathbf{2}}$		
Sentence Image	$\mathbf{S}_{\mathbf{1}}=\mathbf{C}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}=\mathbf{C}_{\mathbf{2}}$	
Clause Image	$\mathbf{C}_{\mathbf{1}}=\Pi \mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{2}}=\mathbf{P}_{3}$	
Phrase Image	$\mathbf{P}_{\mathbf{1}}=\mathbf{L}_{1}$	$\mathbf{P}_{\mathbf{2}}=\mathbf{L}_{\mathbf{2}}$	$\mathbf{P}_{\mathbf{3}}=\mathbf{L}_{3}$
Locus Image	$\mathbf{L}_{\mathbf{1}}$	$\mathbf{L}_{\mathbf{2}}$	$\mathbf{L}_{\mathbf{3}}$
Causer	x	x	x 1
Attr_Carrier	road	\mathbf{P}_{1}	it
IntVal	Tokyo	west	very. long
FinVal	Osaka	west	very. long
Attribute	A_{12}	$\mathrm{~A}_{13}$	$\mathrm{~A}_{02}$
Event Type	Gs	Gs	Gt
Standard	k	k_{1}	k_{2}

[^0]Table2. Discourse Image Tree of S13

$\mathrm{D}_{1}={ }^{\bullet} \mathrm{S}_{1} \mathrm{~S}_{2}$					
$\mathrm{S}_{1}={ }^{\bullet} \mathrm{C}_{2} \mathrm{C}_{1}$					$\mathrm{S}_{2}=\mathrm{C}_{3}$
$\mathbf{C}_{1}=\Pi$ ($\mathbf{P}_{1} \mathbf{P}_{2} \mathbf{P}_{3}$				$\mathrm{C}_{2}=\mathrm{P}_{4}$	$\mathrm{C}_{3}=\mathrm{P}_{5}$
$\mathbf{P}_{1}=\Pi \Pi \mathbf{L}_{1} \mathbf{L}_{2}$		$\mathrm{P}_{2}=\mathrm{L}_{3}$	$\mathrm{P}_{3}=\mathrm{L}_{4}$	$\mathrm{P}_{4}=\mathrm{L}_{5}$	$\mathrm{P}_{5}=\mathrm{L}_{6}$
L_{1}	\mathbf{L}_{2}	\mathbf{L}_{3}	L_{4}	\mathbf{L}_{5}	L_{6}
tom	tom	x_{1}	X_{2}	he	X_{3}
tom	book	book	P_{1}	he	book
q_{1}	q_{1}	red	very.fast	q_{2}	?q
OSK	OSK	red	very.fast	TKY	?q
A_{12}	A_{12}	A_{32}	A_{16}	A_{12}	A_{12}
Gt	Gt	Gt	Gt	Gt	Gt
k_{1}	k_{1}	k_{2}	k_{3}	k_{1}	k_{1}

A DIT can realize hierarchical representation and computation of text meaning consisting of five levels of image: 1) Locus level image, 2) Phrase level image, 3) Clause level image, 4) Sentence level image and 5) Discourse level image and thereby can cope with higher-order meaning representation as shown just below Table 1.
(S12) The road runs west from Tokyo to Osaka. It is very long.
(S13) Tom carries the red book very fast to Osaka after he reaches Tokyo. Then, where is the book?

IV. CONCLUSION

Most of computations on $\boldsymbol{L}_{\boldsymbol{m} \boldsymbol{d}}$ are simply for unifying (or identifying) atomic loci and for evaluating arithmetic expressions such as ' $\mathrm{p}=\mathrm{q}$ ', and therefore we believe that our formalismcan reduce the computational complexities of the traditional ones when applied to the same kinds of problems described here. Moreover, recent employment of DITs has enabled us to program in procedural languages and thereby remarkably reduced computational complexity for $\boldsymbol{L}_{\boldsymbol{m} \boldsymbol{d}}$ expressions while the earlier version of IMAGES-M was programmed in PROLOG and therefore inefficient in computation. This advantage of ours comes from the meaning representation scheme normalized by atomic locus formulas, which has come to facilitate higherorder representation and computation as shown in Tables 1 and 2.

Our future work will include further elaboration of the deductive system, improvement of DIT processing algorithms and establishment of learning facilities for automatic acquisition of word concepts from sensory data and more powerful interfaces for human-system communication by natural language under real environments.

REFERENCES

[1] Yokota M et al (2010), Towards natural intelligence modeling as a formal system based on Mental Image Directed Semantic Theory (Part 1), Proc. of AROB2010, Beppu, Oita, Feb. 2010.

[^0]: * $\mathbf{P}_{\mathbf{1}}=(\exists \mathrm{x}, \mathrm{y}, \mathrm{k}) \mathrm{L}\left(\mathrm{x}, \mathrm{y}\right.$, Tokyo,Osaka, $\left.\mathrm{A}_{12}, \mathrm{Gs}, \mathrm{k}\right) \wedge$ road (y)
 $\mathbf{P}_{\mathbf{2}}=\left(\exists \mathrm{x}, \mathrm{k}_{1}\right) \mathrm{L}\left(\mathrm{x}, \mathbf{P}_{\mathbf{1}}\right.$, west,west, $\left.\mathrm{A}_{13}, \mathrm{Gs}, \mathrm{k}_{1}\right)$

