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Abstract: Space weather can be predicted using data from satellites. For example, condition of high-energy electron is 
vital in providing warnings to spacecraft operations. We investigate an adaptive predictor based on intelligent 
information processing. Adaptive and learning performances have been focused in the investigation. The predictor can 
forecast the conditions of high-energy electrons. The predictor was tested with the normal and abnormal test data. Our 
model succeeded in forecasting the high-energy electron flux 24 hours ahead. 
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I. Introduction 

Satellites are important social infrastructures. There are 
high-energy electrons at Geostationary Earth Orbit 
(GEO). High-energy electrons penetrate circuits and 
cables deeply and cause deep dielectric charging. There 
are reports that the spacecrafts anomalies at GEO are 
associated with enhancement in high-energy electron 
fluxes. For example, the Intelsat K spacecraft at GEO 
lost altitude control due to the failure of the momentum 
wheel control circuitry on January 20, 1994. The 
analysis of specialists revealed that the spacecraft 
anomaly occurred due to dielectric charging by the 
high-intensity and long-duration enhancement of high-
energy electrons [1].  

The enhancement of high-energy electron fluxes is 
known to be correlated with solar activities such as 
Coronal Mass Ejection (CME) (Fig.1) and coronal hole. 
Fig.2 shows that variation of electron flux in association 
with solar wind speed )(V  and north-south 
component of interplanetary magnetic filed )( zB . The 
electron fluxes vary in two phases: initial-to-main phase 
and recovery phase of geomagnetic storms. During the 
initial-to-main phase, high-energy electron fluxes 
rapidly decrease; and after this phase, the fluxes 
increase significantly. The problem is that higher level 
of fluxes causes the irreparable damage to the 
instruments on satellites in the recovery phase of 
geomagnetic storms. 

The dynamics on variations of high-energy electrons 
are under investigation [2]. Many studies have reported 
that the enhancement of high-energy electron is 
correlated with the high-speed solar wind [3]. 
Furthermore, the north-south component of the 
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Fig.2 Schematic plot of parameters correlated with 
CME. The V, Bz and E are corresponded to the solar 
wind speed, the south-north component of 
interplanetary magnetic field and high-energy 
electron fluxes. 

Fig.1 Schematic illustration of relationship between 
CME and spacecraft. 
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interplanetary magnetic field (IMF) is also known to be 
another important parameter of the flux enhancement. 

Many predictors for high-energy electron fluxes at 
GEO have been proposed [5, 6]. Those studies have 
developed predictors that could forecast the predicted 
the fluxes real. The motivation for developing the 
predictor is to protect spacecrafts from the deep 
dielectric charging.  

Earlier studies have tried to involve the relationships 
between high-energy electrons and solar wind 
parameters to the predictors. In space weather, the huge 
data for several or decades years are used for 
forecasting the space environment. The forecast could 
be done based on profiles of observed data. This paper 
tries to construct and evaluate a dynamic relational 
network [7] for anomaly prediction of high-energy 
electron fluxes. The network could predict whether 
high-energy electron fluxes attain to the alert level after 
24 hours. 

 

II. Profiling of Space Environment Data 

2.1 Profiling High-energy Electron Fluxes and Solar 
Wind Data 

We focus on profiling on the activities of high-energy 
electrons and solar wind. Profiling can be used to 
extract features of the sensor data [6]. We make the 
profiles of the relationships among the observed data. 
Those data involves normal and abnormal data. We 
define that normal and abnormal data of high-energy 
electrons are corresponded to the alert and quiet level 
flux respectively. In this paper, the alert level follows 
criteria of alerts of Space Weather Prediction Center 
(NOAA) [9]. The normal data is determined using the 
solar wind speed and north-south component of IMF 
when the high-energy electron fluxes are quiet level. In 
other cases, those data are defined as abnormal. We 
create the profiles of the normal data from only daily 
variations of high-energy electron fluxes that not 
involve coronal hole and CME event data. 

2.2 Profiling Time Series Data by Vector 
Autoregressive Models 

The satellites observe the space environment using their 
sensors. The data are sent to ground station and then 
stored into databases. The high-energy electron fluxes 
and the solar wind data are represented in a style with 
physical values. We can obtain them as time series data 
from the databases. 

We create the profiles from the observed data with a 
statistical method. As the model for the time series 
analysis, we use the vector autoregressive models. In 
the VAR model, not only its own past values but also 
those of related variables are involved. Let )(tx  and 

)(ty  be explained variables; )1( −tx ,…, 
)( mtx − ; )1( −ty ,…, )( mty −  be explaining 

variables; and 1a ,…, ma ; 1b ,…, mb ; 1c , …, 

mc ; 1d , …, md  be autoregressive coefficients. The 
VAR model of order m is expressed as follows: 

The underlined parts ))('),('( tytx  represent 
predicted values while are the residual errors. In offline 
training, we estimate the autoregressive coefficients by 
the Levinson’s algorithm. The profile is created by 
estimating the coefficients from couple of observed data. 
The order of the VAR model is determined by using the 
values of AIC (Akaike Information Criterion) of the 
models. We determine the order of the model from the 
models that the AIC value is the highest. 

 

III. Dynamic Relational Network for Anomaly 
Prediction of High-energy Electron Fluxes 

This paper tries to predict the alert level flux of high-
energy electrons using dynamic relational network. The 
dynamic relational network is consisted of sensors and 
arcs. The sensors of the network diagnose each other by 
evaluating target’s sensor data. The credibility of 
sensors will change dynamically as the diagnosis 
proceeds, and then the network will adapt to the 
changes of the environment. 

We build the dynamic relational network as black 
and white model [7] using real three sensors and one 
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Fig.3 Dynamic relational network for anomaly 
prediction on high-energy electron fluxes.  
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virtual sensor (Fig.3). The real sensors are the high-
energy electron fluxes ( E ), the solar wind speed (V ) 
and the north-south component of IMF ( zB ). The 
virtual sensor is high-energy electron fluxes 24 hours 
ahead ( 24E ). The virtual sensor will be diagnosed from 
other sensors. The network will detect anomaly when 
the credibility of the electrons flux after 24 hours is less 
than the alarm threshold. For estimating the electron 
fluxes, we regard the current flux data as the future flux 
data because we cannot obtain them. 

The arcs are corresponded to the profiles. The 
diagnosis of each sensor is done by calculating error 

)(tp  between the actual value and predicted value. 
The sensor diagnose the target sensor as abnormal when 

)(tp  deviates the threshold θ . The threshold θ  is 
defined as δθ n=  where the n  and δ  are the 
deviation coefficient and standard deviation of observed 
data respectively.  

 

IV. Tests and Evaluations 

4.1 Data source 
We use one hour averaged data of the solar-wind and 
the high-energy electron flux at GEO. The solar wind 
data observed by the Advanced Composition Explorer 
(ACE) satellite are obtained from the OMNI-2 database 
[8] in the National Space Science Data Center (NSSDC), 
the National Aeronautics and Space 
Administration/Goddard Space Flight Center. 

The electron flux data observed by the GOES 
satellite are obtained from the National Geophysical 
Data Center (NGDC), and the National Oceanic and 
Atmospheric Administration (NOAA). We obtain both 
data during the period from January 1, 1998 to 
December 31, 2006, thus eight years in total.  

4.2 Data Handling 
The data observed by the satellites could include the 
missing data due to the instruments troubles by the 
space weather events and/or various reasons for the 
operations. We regard the data as missing where the 
interval of the missing exceeds two hours. The missing 
data are interpolated if the observation down time is less 
than three hours. We exclude the missing data in 
training and simulations. 

4.3 Methods and Evaluations 
We evaluate the dynamic relational network based on 
the test results. The network is tested by inputting the 

test data. The test data are consisted of normal and 
abnormal data. The normal test data only involves the 
data where high-energy electron fluxes are the alert 
level. On the other hand, the abnormal test data involves 
the data where the flux is the quiet level. The abnormal 
test data contain the data on coronal hole and CME 
events. We prepare 20 test cases as normal test data and 
7 test cases on coronal hole and CME events (14 cases 
in total) as abnormal test data. For the abnormal test 
cases, we choose the test cases from the event list [3]. 
The period of the test data is about 5 days. The period of 
the test data is different due to the conditions of the 
space environment. The performance of anomaly 
prediction is evaluated by calculating false-alarm rate 
and missed-alarm rate. We evaluate the test result in 
each step whether the anomaly prediction succeeds. 

4.4 Test Results 
Fig.4 shows a diagnosis result of the dynamic relational 
network for the abnormal data involving CME event. 

Fig.4 Time evolution of credibility when dynamic 
relational network tests abnormal data involving 
CME event. The deviation coefficient is 0.06. The 
threshold of anomaly detection is 0.5. 

Fig.5 Performance versus deviation coefficient. The 
deviation coefficient varies from 0 to 0.4. The 
threshold is 0.5 in this test. The threshold of anomaly 
detection is 0.5.

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 68



The CME happens when the test starts in this test case. 
The credibility of high-energy electron flux 24 hours 
ahead is diagnosed as anomaly. The anomaly prediction 
is successful in this test case. 

Fig.5 shows the performance trade-off when the 
deviation coefficient varies. The false-alarm decreases 
as the deviation coefficient increases while the missed-
alarm rate rises. The performance of the dynamic 
relational network shows the trade-off on the deviation 
coefficient. 

Fig.6 shows the performance when the alarm 
threshold is changed. The missed-alarm rate increases 
when the deviation coefficient is 0.3. On the other hand, 
the false-alarm rate is kept low level. The dynamic 
relational network would predict successfully if both 
parameters are adjusted appropriately. 

 

V. Discussions 

We have investigated the performance of the dynamic 
relational network for the anomaly prediction on high-
energy electron fluxes. The diagnosis of the network is 
done in online and therefore the credibility will change 
dynamically [6]. Our model differs from the neural 
network predictors [4, 5] in that it could adapt to the 
dynamic environment. However, the adaptation of the 
network is influenced by the tuning parameters [6]. For 
the tests, the deviation coefficient and the alarm 
threshold are used as tuning parameters of the network.  

The performance of the network changes according 
to the deviation coefficient. The performances also 
changes according to the alarm threshold. Each 
parameter of the networks should be controlled 

appropriately to achieve the performance requirement in 
order to protect the satellites from dielectric charging. 
For future works, we need to evaluate the network using 
the profiles created from only abnormal data. 

  

VI. Conclusions 

We constructed a dynamic relational network for 
anomaly prediction on high-energy electron fluxes. The 
network could predict the alert level flux. Furthermore, 
we investigated the trade-off of the performances in 
order to manage the performance.  
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