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Abstract: This paper presents evaluations of an immunity-based anomaly detection method with dynamic updating of 

profiles. Our experiments showed that the updating of both self and nonself profiles markedly decreased both the false 

alarm and missed alarm rates in masquerader detection. In computer worm detection, all the random-scanning worms 

and simulated metaserver worm examined were detected. The detection accuracy of the simulated passive worm was 

markedly improved. 
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I. INTRODUCTION 

Many anomaly detection methods [1] are restricted 

to the reference of a single user profile. One drawback 

of these methods is that many false alarms arise when 

valid users carry out new operations that they have 

never performed previously. To improve their detection 

accuracy, we have proposed a new immunity-based 

anomaly detection method with multiple agents based 

on the specificity and diversity of the immune system 

[2]. Our approach makes use of multiple profiles rather 

than a single profile, which leads to an improvement in 

detection accuracy.  

In addition, we incorporated a new framework of 

dynamically updating of profiles with test sequences 

(i.e., not training sequences) into our immunity-based 

anomaly detection method. The updating of both self 

and nonself profiles markedly decreased both the false 

alarm and missed alarm rates in internal masquerader 

detection [3]. However, the detection accuracy of 

external masqueraders and computer worms was not 

evaluated. 

In this paper, we made a slight change in profile 

construction to escape assignment overflow. In 

experiments, we evaluated the extent to which profile 

updating improved the detection accuracy of external 

masqueraders and computer worms. 

II. RELATED WORKS 

Artificial immune systems for computer security can 

be divided roughly into three types [4]: hybrid 

approaches combined with multiple conventional 

detection methods [5], approaches inspired by the 

mechanism of negative selection in the thymus [6], and 

approaches motivated by the danger theory [7].  

Our system is related to those using the second 

approach. The difference in intrusion detection between 

our method and those reported previously is the 

reference information used for detection. Previous 

systems referred only to nonself information, while our 

method refers to both self and nonself information. This 

reference to self information contributes to a reduction 

in false alarms. 

III. IMMUNITY-BASED ANOMALY DETECTION 

1. Definitions of “self” and “nonself” 

The heart of the immune system is the ability to 

distinguish between “self” (i.e., the body’s own 

molecules, cells, and tissues) and “nonself” (i.e., foreign 

substances, such as viruses and bacteria). Similarly, 

operation sequences executed by a user on his/her own 

account are defined as “self,” and all other sequences 

are defined as “nonself.” For example, if one user 

executes commands on his/her own account, the 

command sequence is “self.” If another user executes 

commands on someone else’s account, the command 

sequence is “nonself.” Such a user is defined as a 

masquerader or an intruder, regardless of whether the 

user’s actions are malicious. 

In an immunity-based anomaly detection system, 

operation sequences for each user in the training data 

belong absolutely to “self.” The operation sequences are 

used to construct a profile for each user. The profile 

yields the probability that the operation sequence 

belongs to “self.” Based on this probability, the system 
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classifies the operation sequence as either belonging or 

not belonging to “self.” 

2. Generation of agents 

An immune cell has a unique receptor with high 

affinity for specific antigens. Similarly, our 

immunity-based system generates a user-specific agent 

for every user, i.e., every account. An agent has a unique 

profile, representing the probability that the operation 

sequence is performed by the original user. The 

probability is expressed by a score, which is derived 

from the detection method, i.e., HMM, IPAM, the Bayes 

1-step Markov method, etc. We chose the HMM method, 

because previous studies indicated that it performs well 

[2]. The parameters of the HMM are given by 

𝜆 =   𝜋, 𝐴, 𝐵  and 𝑉 , where 𝜋  is the initial state 

distribution, 𝐴  is the state-transition probability 

distribution, 𝐵 is the operation probability distribution, 

and 𝑉  is the operation table that assigns a unique 

number to each operation in training data composed of 

operation sequences obtained previously from each 

original user. The size of the operation table 𝑉  is 

limited to 𝑀𝑚𝑎𝑥  to avoid assignment overflow, where 

𝑀𝑚𝑎𝑥  is specified by a system administrator. The 

parameters 𝜋, 𝐴, 𝐵 are estimated from the training data, 

as described [2]. The parameter 𝑉 is determined by 

operations in training data. 

The agent can compute the likelihood 𝑃(𝑂|𝜆) of 

the sequence 𝑂  with the profile 𝜆.  The likelihood 

𝑃(𝑂|𝜆) represents the probability that the sequence 𝑂 

was performed by the original user corresponding to the 

agent, i.e., the profile 𝜆. The agent would compute a 

high likelihood, i.e., a high score, only for the sequences 

of the original user corresponding to the agent. 

3. Adaptive discrimination of self and nonself 

Our immunity-based system has a user-specific 

agent for every account. Each agent monitors operations 

on its own account until the length of the operation 

sequence reaches 𝐿, where 𝐿 is specified by a system 

administrator. The agent of the account on which the 

length of the sequence reaches 𝐿 is activated. 

The activated agent shares the sequence with all the 

other agents. All agents compute their own score of the 

sequence. The activated agent computes the effective 

threshold, 𝑀𝑖𝑛 +   𝑀𝑎𝑥 –  𝑀𝑖𝑛 ×  𝑇ℎ , where 𝑀𝑖𝑛  is 

the minimum score of all scores, 𝑀𝑎𝑥 is the maximum 

score of all scores, and 𝑇ℎ is the percentage difference 

between 𝑀𝑖𝑛 and 𝑀𝑎𝑥. 𝑇ℎ is specified by a system 

administrator. The activated agent compares its own 

score, 𝑋, with the effective threshold, 𝑌. If 𝑋 ≥ 𝑌, the 

activated agent classifies the sequence as normal, i.e., 

self. Otherwise, the agent classifies the sequence as 

abnormal, i.e., nonself. Exceptionally, provided that 𝑋 

is equal to the computational minimum value of 

𝑃 𝑂 𝜆) , the sequence is regarded as abnormal. 

Conversely, the sequence is regarded as normal if 𝑋 is 

equal to the computational maximum value of 𝑃(𝑂| 𝜆). 

If the activated agent classifies the sequence as self, 

it updates its own profile (i.e., a self profile). If not, the 

agent that computed the maximum score of all agents 

updates its own profile (i.e., a nonself profile) and the 

activated agent raises an alarm to a system administrator. 

These profiles are newly estimated from the sequence 

just examined and all the sequences trained previously. 

Note that the size of the operation table 𝑉 is limited to 

𝑀𝑚𝑎𝑥  specified by a system administrator. Once the 

size of 𝑉  reaches 𝑀𝑚𝑎𝑥 , the least frequently used 

operation is replaced with a new one. 

Finally, the activated agent returns to a normal state 

and continues to monitor operations on its own account. 

IV. EXPERIMENTS AND DISCUSSIONS 

1. Masquerader detection 

As experimental data, we used network traffic 

captured from 12 users for about one month. These data 

are identical to those used in our previous study [8]. 

This experiment uses web traffic extracted from the data, 

as web traffic accounts for the majority of network 

traffic. The web traffic of each user contained more than 

3,000 requests. The first 500 requests for each user are 

training data to allow construction of a profile. The next 

1,000 requests are test data to evaluate the detection 

accuracy. The test for the sequence is performed every 

100 requests. All the profiles that are to be updated are 

updated synchronously by incrementing the sequence 

number. Anomalous behavior is simulated by testing 

one user’s request sequence against another user’s 

profile. 

The number of hidden states of the HMM is set to 1 

due to the lowest computational cost and the best 

accuracy of other states [8]. The HMM parameter is 

equal to 𝜆 =   1, 1, 𝐵 , where 𝐵 is equal to a relative 

frequency distribution of operations in training data. 

The metrics of detection accuracy are based on the 

false alarm rate, i.e., false positive rate, and missed 

alarm rate, i.e., false negative rate. In general, there is a 

trade-off between the false alarm rate and the missed 

alarm rate. The relationship between these rates can be 

described visually by a receiver operating characteristic 

(ROC) curve, which is a parametric curve generated by 
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varying the threshold 𝑇ℎ  from 0% to 100%, and 

computing these rates at each threshold 𝑇ℎ. In this 

experiment, each ROC curve consists of 101 points for 

simplicity. Each point corresponds to one threshold 

from 𝑇ℎ = 0 to 𝑇ℎ = 1.0. In addition, the area under 

the ROC curve (AUC) is computed as a scalar measure 

for ROC analysis. The AUC enables quantitative 

comparison of multiple ROC curves. In this experiment, 

the AUC may be much larger than the exact AUC due to 

thinning out plots. 

We evaluated the detection accuracy of the profile 

updating. Figure 1 shows ROC curves of internal and 

external masquerader detection for the method without 

updating any profiles, with updating only the self 

profiles, with updating only the nonself profiles, and 

with updating both profiles. In each ROC curve, 6 

internal users were chosen randomly from among the 

total of 12 users, with all the others being the external 

users. Each point on the ROC curve is an average over 

100 combinations. The statistics of the AUCs for 100 

combinations of internal and external users were 

examined and the statistical significance of differences 

was analyzed by ANOVA with Dunnett’s test for 

multiple comparisons. 

In Figure 1(a), the method with updating both 

profiles indicated the best detection accuracy of all 

curves. The mean AUC of the method with updating 

both profiles was 0.026, which was significantly lower 

(P < 0.001) than that of the method without updating 

any profiles (0.072). This statistical significance seemed 

to be dependent mainly on the updating of the self 

profiles, as the updating of only the self profiles 

decreased the false alarm rate, whereas the updating of 

only the nonself profiles slightly increased the missed 

alarm rate. It should be noted that the updating of both 

profiles achieved a missed alarm rate of 34.37% without 

false alarms at the threshold 43.43%. 

Similar to Figure 1(a), Figure 1(b) indicated that the 

method with updating both profiles outperformed all the 

other methods. The mean AUC of the method with 

updating both profiles was 0.108, significantly lower (P 

< 0.001) than that of the method without updating any 

profiles (0.150). This statistical significance is due to 

the updating of both the self and nonself profiles. The 

updating of the self profiles decreased the number of 

false alarms, and the updating of the nonself profiles 

decreased the number of missed alarms. It should be 

noted that the updating of both profiles achieved a 

missed alarm rate of 50.13% without false alarms at the 

threshold 43.43%. 

2. Worm detection 

Computer worms are divided into five types of 

target discovery: random-scanning, hit-list, metaserver, 

topological, and passive worms [9].  

A. Random-scanning worms 

We evaluated four random-scanning worms in the 

wild: CodeRedv2, CodeRedII, Slammer, and 

Blaster. These worms attempt to infect randomly 

selected computers. As with our previous study [8], 

there were no missed alarms without false alarms on 

any of the accounts for all the worms examined in all 

methods. 

B. Hit-list worms 

A hit-list worm attempts to infect computers of 

target lists pre-generated by an attacker or its author. 

  

(a) Internal masquerader detection (b) External masquerader detection 

Fig. 1. ROC curves of internal and external masquerader detection for the method without updating any profiles, with upda

ting only the self profiles, with updating only the nonself profiles, and with updating both profiles. 

 

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 60



The hit-list includes IP addresses of vulnerable servers 

or always-connected IP addresses. All the methods seem 

to detect these worms if the hit-list does not include IP 

addresses of the operation table. Otherwise, for example, 

an attacker can randomly insert many IP addresses of 

popular websites into the hit-list at the expense of 

high-speed spreading. In that case, our method could 

not detect these worms because IP addresses of popular 

websites are likely to coincide with those of the 

operation table. 

C. Metaserver worms 

A metaserver worm obtains a target list from a 

metaserver that keeps a list of active servers and 

attempts to infect computers on these lists. The Santy 

worm is a metaserver worm, which attempts to 

propagate to IP addresses in the search results provided 

by GoogleTM (www.google.com). 

All the methods detected the simulated metaserver 

worm [8] because these worms have difficulty guessing 

IP addresses on the operation table. 

D. Topological worms 

A topological worm obtains a target list from the 

devices of the infected computer. For example, the 

worm obtains targets from peer-to-peer software in an 

infected computer and attempts to infect all peers. This 

worm may escape all methods, because the traffic 

pattern of this worm may appear normal and the peers 

may be included in the operation table. An alternative 

method would be needed to prevent topological worms 

from spreading. 

E. Passive worms 

The passive worm, which either waits for target 

computers to visit or follows user’s requests into target 

computers, is more difficult for an anomaly detection 

system to detect, because its behavior is similar to that 

of the user. 

The evaluation results of a simulated passive worm 

[8] were almost the same as those in Fig. 1. The mean 

AUC of the method with updating both profiles was 

0.029, which was significantly lower (P < 0.001) than 

that of the method without updating any profiles (0.121). 

The mean difference between the method with updating 

both profiles and without updating any profiles was 

larger than that of the internal masquerader detection. 

Briefly, profile updating markedly improved the 

detection accuracy of the simulated passive worm. 

V. CONCLUSIONS 

We have made a change in our immunity-based 

anomaly detection method to escape assignment 

overflow in the operation table, and we evaluated and 

discussed the extent to which profile updating improves 

the detection accuracy of external masqueraders and 

computer worms. 

Experimentally, we showed that the updating of both 

profiles markedly decreased both the false alarm rate 

and the missed alarm rate in masquerader detection. In 

worm detection, all the random-scanning worms and the 

simulated metaserver worm examined were detected. 

The detection accuracy of the simulated passive worm 

was markedly improved. Detection of topological 

worms may require an alternative method to investigate 

inbound traffic in order to detect exploit codes and/or 

shellcodes. 
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