
Evaluations for an Immunity-Based Anomaly Detection with Dynamic

Updating of Profiles

Takeshi Okamoto1 and Yoshiteru Ishida2

1 Dept. of Information Network and Communication, Kanagawa Institute of Technology,

1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
2 Dept. of Knowledge-Based Information Engineering, Toyohashi University of Technology,

Tempaku, Toyohashi , Aichi 441-8580, Japan

Abstract: This paper presents evaluations of an immunity-based anomaly detection method with dynamic updating of

profiles. Our experiments showed that the updating of both self and nonself profiles markedly decreased both the false

alarm and missed alarm rates in masquerader detection. In computer worm detection, all the random-scanning worms

and simulated metaserver worm examined were detected. The detection accuracy of the simulated passive worm was

markedly improved.

Keywords: Immunity-based system, anomaly detection, computer worm, ROC, adaptation.

I. INTRODUCTION

Many anomaly detection methods [1] are restricted

to the reference of a single user profile. One drawback

of these methods is that many false alarms arise when

valid users carry out new operations that they have

never performed previously. To improve their detection

accuracy, we have proposed a new immunity-based

anomaly detection method with multiple agents based

on the specificity and diversity of the immune system

[2]. Our approach makes use of multiple profiles rather

than a single profile, which leads to an improvement in

detection accuracy.

In addition, we incorporated a new framework of

dynamically updating of profiles with test sequences

(i.e., not training sequences) into our immunity-based

anomaly detection method. The updating of both self

and nonself profiles markedly decreased both the false

alarm and missed alarm rates in internal masquerader

detection [3]. However, the detection accuracy of

external masqueraders and computer worms was not

evaluated.

In this paper, we made a slight change in profile

construction to escape assignment overflow. In

experiments, we evaluated the extent to which profile

updating improved the detection accuracy of external

masqueraders and computer worms.

II. RELATED WORKS

Artificial immune systems for computer security can

be divided roughly into three types [4]: hybrid

approaches combined with multiple conventional

detection methods [5], approaches inspired by the

mechanism of negative selection in the thymus [6], and

approaches motivated by the danger theory [7].

Our system is related to those using the second

approach. The difference in intrusion detection between

our method and those reported previously is the

reference information used for detection. Previous

systems referred only to nonself information, while our

method refers to both self and nonself information. This

reference to self information contributes to a reduction

in false alarms.

III. IMMUNITY-BASED ANOMALY DETECTION

1. Definitions of “self” and “nonself”

The heart of the immune system is the ability to

distinguish between “self” (i.e., the body’s own

molecules, cells, and tissues) and “nonself” (i.e., foreign

substances, such as viruses and bacteria). Similarly,

operation sequences executed by a user on his/her own

account are defined as “self,” and all other sequences

are defined as “nonself.” For example, if one user

executes commands on his/her own account, the

command sequence is “self.” If another user executes

commands on someone else’s account, the command

sequence is “nonself.” Such a user is defined as a

masquerader or an intruder, regardless of whether the

user’s actions are malicious.

In an immunity-based anomaly detection system,

operation sequences for each user in the training data

belong absolutely to “self.” The operation sequences are

used to construct a profile for each user. The profile

yields the probability that the operation sequence

belongs to “self.” Based on this probability, the system

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 58

classifies the operation sequence as either belonging or

not belonging to “self.”

2. Generation of agents

An immune cell has a unique receptor with high

affinity for specific antigens. Similarly, our

immunity-based system generates a user-specific agent

for every user, i.e., every account. An agent has a unique

profile, representing the probability that the operation

sequence is performed by the original user. The

probability is expressed by a score, which is derived

from the detection method, i.e., HMM, IPAM, the Bayes

1-step Markov method, etc. We chose the HMM method,

because previous studies indicated that it performs well

[2]. The parameters of the HMM are given by

𝜆 = 𝜋, 𝐴, 𝐵 and 𝑉 , where 𝜋 is the initial state

distribution, 𝐴 is the state-transition probability

distribution, 𝐵 is the operation probability distribution,

and 𝑉 is the operation table that assigns a unique

number to each operation in training data composed of

operation sequences obtained previously from each

original user. The size of the operation table 𝑉 is

limited to 𝑀𝑚𝑎𝑥 to avoid assignment overflow, where

𝑀𝑚𝑎𝑥 is specified by a system administrator. The

parameters 𝜋, 𝐴, 𝐵 are estimated from the training data,

as described [2]. The parameter 𝑉 is determined by

operations in training data.

The agent can compute the likelihood 𝑃(𝑂|𝜆) of

the sequence 𝑂 with the profile 𝜆. The likelihood

𝑃(𝑂|𝜆) represents the probability that the sequence 𝑂

was performed by the original user corresponding to the

agent, i.e., the profile 𝜆. The agent would compute a

high likelihood, i.e., a high score, only for the sequences

of the original user corresponding to the agent.

3. Adaptive discrimination of self and nonself

Our immunity-based system has a user-specific

agent for every account. Each agent monitors operations

on its own account until the length of the operation

sequence reaches 𝐿, where 𝐿 is specified by a system

administrator. The agent of the account on which the

length of the sequence reaches 𝐿 is activated.

The activated agent shares the sequence with all the

other agents. All agents compute their own score of the

sequence. The activated agent computes the effective

threshold, 𝑀𝑖𝑛 + 𝑀𝑎𝑥 – 𝑀𝑖𝑛 × 𝑇ℎ , where 𝑀𝑖𝑛 is

the minimum score of all scores, 𝑀𝑎𝑥 is the maximum

score of all scores, and 𝑇ℎ is the percentage difference

between 𝑀𝑖𝑛 and 𝑀𝑎𝑥. 𝑇ℎ is specified by a system

administrator. The activated agent compares its own

score, 𝑋, with the effective threshold, 𝑌. If 𝑋 ≥ 𝑌, the

activated agent classifies the sequence as normal, i.e.,

self. Otherwise, the agent classifies the sequence as

abnormal, i.e., nonself. Exceptionally, provided that 𝑋

is equal to the computational minimum value of

𝑃 𝑂 𝜆) , the sequence is regarded as abnormal.

Conversely, the sequence is regarded as normal if 𝑋 is

equal to the computational maximum value of 𝑃(𝑂| 𝜆).

If the activated agent classifies the sequence as self,

it updates its own profile (i.e., a self profile). If not, the

agent that computed the maximum score of all agents

updates its own profile (i.e., a nonself profile) and the

activated agent raises an alarm to a system administrator.

These profiles are newly estimated from the sequence

just examined and all the sequences trained previously.

Note that the size of the operation table 𝑉 is limited to

𝑀𝑚𝑎𝑥 specified by a system administrator. Once the

size of 𝑉 reaches 𝑀𝑚𝑎𝑥 , the least frequently used

operation is replaced with a new one.

Finally, the activated agent returns to a normal state

and continues to monitor operations on its own account.

IV. EXPERIMENTS AND DISCUSSIONS

1. Masquerader detection

As experimental data, we used network traffic

captured from 12 users for about one month. These data

are identical to those used in our previous study [8].

This experiment uses web traffic extracted from the data,

as web traffic accounts for the majority of network

traffic. The web traffic of each user contained more than

3,000 requests. The first 500 requests for each user are

training data to allow construction of a profile. The next

1,000 requests are test data to evaluate the detection

accuracy. The test for the sequence is performed every

100 requests. All the profiles that are to be updated are

updated synchronously by incrementing the sequence

number. Anomalous behavior is simulated by testing

one user’s request sequence against another user’s

profile.

The number of hidden states of the HMM is set to 1

due to the lowest computational cost and the best

accuracy of other states [8]. The HMM parameter is

equal to 𝜆 = 1, 1, 𝐵 , where 𝐵 is equal to a relative

frequency distribution of operations in training data.

The metrics of detection accuracy are based on the

false alarm rate, i.e., false positive rate, and missed

alarm rate, i.e., false negative rate. In general, there is a

trade-off between the false alarm rate and the missed

alarm rate. The relationship between these rates can be

described visually by a receiver operating characteristic

(ROC) curve, which is a parametric curve generated by

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 59

varying the threshold 𝑇ℎ from 0% to 100%, and

computing these rates at each threshold 𝑇ℎ. In this

experiment, each ROC curve consists of 101 points for

simplicity. Each point corresponds to one threshold

from 𝑇ℎ = 0 to 𝑇ℎ = 1.0. In addition, the area under

the ROC curve (AUC) is computed as a scalar measure

for ROC analysis. The AUC enables quantitative

comparison of multiple ROC curves. In this experiment,

the AUC may be much larger than the exact AUC due to

thinning out plots.

We evaluated the detection accuracy of the profile

updating. Figure 1 shows ROC curves of internal and

external masquerader detection for the method without

updating any profiles, with updating only the self

profiles, with updating only the nonself profiles, and

with updating both profiles. In each ROC curve, 6

internal users were chosen randomly from among the

total of 12 users, with all the others being the external

users. Each point on the ROC curve is an average over

100 combinations. The statistics of the AUCs for 100

combinations of internal and external users were

examined and the statistical significance of differences

was analyzed by ANOVA with Dunnett’s test for

multiple comparisons.

In Figure 1(a), the method with updating both

profiles indicated the best detection accuracy of all

curves. The mean AUC of the method with updating

both profiles was 0.026, which was significantly lower

(P < 0.001) than that of the method without updating

any profiles (0.072). This statistical significance seemed

to be dependent mainly on the updating of the self

profiles, as the updating of only the self profiles

decreased the false alarm rate, whereas the updating of

only the nonself profiles slightly increased the missed

alarm rate. It should be noted that the updating of both

profiles achieved a missed alarm rate of 34.37% without

false alarms at the threshold 43.43%.

Similar to Figure 1(a), Figure 1(b) indicated that the

method with updating both profiles outperformed all the

other methods. The mean AUC of the method with

updating both profiles was 0.108, significantly lower (P

< 0.001) than that of the method without updating any

profiles (0.150). This statistical significance is due to

the updating of both the self and nonself profiles. The

updating of the self profiles decreased the number of

false alarms, and the updating of the nonself profiles

decreased the number of missed alarms. It should be

noted that the updating of both profiles achieved a

missed alarm rate of 50.13% without false alarms at the

threshold 43.43%.

2. Worm detection

Computer worms are divided into five types of

target discovery: random-scanning, hit-list, metaserver,

topological, and passive worms [9].

A. Random-scanning worms

We evaluated four random-scanning worms in the

wild: CodeRedv2, CodeRedII, Slammer, and

Blaster. These worms attempt to infect randomly

selected computers. As with our previous study [8],

there were no missed alarms without false alarms on

any of the accounts for all the worms examined in all

methods.

B. Hit-list worms

A hit-list worm attempts to infect computers of

target lists pre-generated by an attacker or its author.

(a) Internal masquerader detection (b) External masquerader detection

Fig. 1. ROC curves of internal and external masquerader detection for the method without updating any profiles, with upda

ting only the self profiles, with updating only the nonself profiles, and with updating both profiles.

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 60

The hit-list includes IP addresses of vulnerable servers

or always-connected IP addresses. All the methods seem

to detect these worms if the hit-list does not include IP

addresses of the operation table. Otherwise, for example,

an attacker can randomly insert many IP addresses of

popular websites into the hit-list at the expense of

high-speed spreading. In that case, our method could

not detect these worms because IP addresses of popular

websites are likely to coincide with those of the

operation table.

C. Metaserver worms

A metaserver worm obtains a target list from a

metaserver that keeps a list of active servers and

attempts to infect computers on these lists. The Santy

worm is a metaserver worm, which attempts to

propagate to IP addresses in the search results provided

by GoogleTM (www.google.com).

All the methods detected the simulated metaserver

worm [8] because these worms have difficulty guessing

IP addresses on the operation table.

D. Topological worms

A topological worm obtains a target list from the

devices of the infected computer. For example, the

worm obtains targets from peer-to-peer software in an

infected computer and attempts to infect all peers. This

worm may escape all methods, because the traffic

pattern of this worm may appear normal and the peers

may be included in the operation table. An alternative

method would be needed to prevent topological worms

from spreading.

E. Passive worms

The passive worm, which either waits for target

computers to visit or follows user’s requests into target

computers, is more difficult for an anomaly detection

system to detect, because its behavior is similar to that

of the user.

The evaluation results of a simulated passive worm

[8] were almost the same as those in Fig. 1. The mean

AUC of the method with updating both profiles was

0.029, which was significantly lower (P < 0.001) than

that of the method without updating any profiles (0.121).

The mean difference between the method with updating

both profiles and without updating any profiles was

larger than that of the internal masquerader detection.

Briefly, profile updating markedly improved the

detection accuracy of the simulated passive worm.

V. CONCLUSIONS

We have made a change in our immunity-based

anomaly detection method to escape assignment

overflow in the operation table, and we evaluated and

discussed the extent to which profile updating improves

the detection accuracy of external masqueraders and

computer worms.

Experimentally, we showed that the updating of both

profiles markedly decreased both the false alarm rate

and the missed alarm rate in masquerader detection. In

worm detection, all the random-scanning worms and the

simulated metaserver worm examined were detected.

The detection accuracy of the simulated passive worm

was markedly improved. Detection of topological

worms may require an alternative method to investigate

inbound traffic in order to detect exploit codes and/or

shellcodes.

ACKNOWLEDGEMENTS

This work was supported by Grant-in-Aid for

Scientific Research (B) 19700072, 2009.

REFERENCES

[1] Schonlau M, DuMouchel W, Ju W, et al. (2001),

Computer intrusion: Detecting masquerades,

Statistical Science 16(1):58-74.

[2] Okamoto T, Ishida Y (2009), An Immunity-Based

Anomaly Detection System with Sensor Agents,

Sensors 9(11):9175-95.

[3] Okamoto T, Ishida Y (2008), Dynamic Updating of

Profiles for an Immunity-Based Anomaly Detection

System. LNAI 5179, pp. 456-64.

[4] Kim J, Bentley P, Aickelin U, et al. (2007), Immune

system approaches to intrusion detection - a review,

Natural computing 6(4):413-66.

[5] Kephart J (1994), A biologically inspired immune

system for computers. Artificial Life IV, pp. 130-39.

[6] Forrest S, Hofmeyr S, Somayaji A, et al. (1996), A

sense of self for unix processes. Proc. of the 1996

IEEE Symposium on Security and Privacy, pp.

120-28.

[7] Aickelin U, Cayzer S (2002), The danger theory and

its application to artificial immune systems. Proc. of

the 1st Int. Conf. on Artificial Immune Systems, pp.

141-48.

[8] Okamoto T, Ishida Y (2006), Towards an

immunity-based anomaly detection system for

network traffic. LNAI 4252, pp. 123-30.

[9] Weaver N, Paxson V, Staniford S, et al. (2003), A

taxonomy of computer worms. Proc. of the 2003

ACM workshop on Rapid malcode, pp. 11-18.

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 61

