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Abstract: Drinking water can be contaminated by microorganisms which can be re-grown in case of not controlling 

chlorine concentration well in water treatment plant (hereafter WTP). It can be harmful to public health. Most WTPs 

have used chlorine as disinfectant. It can be used in pre-chlorination, post-chlorination and re-chlorination. In post-

chlorination, it is injected after filtration to keep residual chlorine from being contaminated by microorganisms. Post-

chlorine process without re-chlorination is directly serviced to citizens. If the concentration is low, drinking water can 

be contaminated by bacterial re-growth. On the other hand, the high chlorine can lead to customer complaints about 

taste and odor. Therefore, it is necessary to predict chlorine decay in clear well to maintain desired chlorine levels. In 

this paper, it is shown that artificial neuro-fuzzy inference system could be used to model chlorine decay in the process 

and control residual chlorine better than present controller, in which cascade control is considered to compensate the 

error in the output. 
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I. INTRODUCTION 

A major objective of drinking water treatment is to 

provide microbiologically safe drinking water. Water 

contaminated by microorganisms can be a major risk to 

public health. Chlorine is the most commonly used 

disinfectant due to its ease of application and 

monitoring, its low cost and its effectiveness in killing 

bacteria [1–3].   

Usually, chlorine dosing rate is determined by 

operator by monitoring input and output chlorine rate in 

WTP. However, it is hard to concentrate on the process 

all day long among many processes and the rate is 

usually fixed, which doesn’t guarantee the output 

chlorine to be as we wish. Therefore, it is necessary to 

predict the proper rate based on reliable data to ensure 

pleasant drinking water.   

The simplest model for chlorine decay is the first 

order decay model in which the chlorine concentration 

is assumed to decay exponentially [4–6] and for a given 

initial concentration and temperature, the first order 

model can provide a fair approximation. The difficult 

problems are to decide the decay constant and carry out 

many experiments that can vary with the quality of the 

source water, the water temperature, the Reynolds 

number and the material properties. These kinds of 

works are based on a high level of knowledge of the 

chlorination process. First order decay with respect to 

chlorine [7] : 

dC/dt = -kC or Ct = C0 exp(-kt)             (1) 

Where k is the first order decay constant. 

As an alternative, statistical models can be used. 

Unlike first order decay model, it is not necessary to 

decide the constant and take experiment. Instead, it 

requires much reliable data stored in a database to 

predict residual chlorine. The development of 

statistically based models for disinfection control 

purposes is proper in cases where parameter estimation 

within the process-based model is imprecise or difficult 

to obtain [8] or where the data required for the 

development of first order models are not available. 

This data driven method doesn’t require a prior 

knowledge of chemistry and mathematics related to 

residual chlorine [9]. It is very important to find related 

variables to predict residual concentration well. Most 

WTPs are computerized to monitor and control their 

processes and then to accumulate huge amounts of data 

in hard disk drives. These large amounts of data can be 

used to analyze chlorine decay and to determine proper 

injection rate. The following figure demonstrates water 

treatment plant and detailed post-chlorination process. 
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Fig. 1. Conventional Water Treatment Process 

 

II. CASE STUDY 

1. Object WTP  

The case study considers chlorine decay and 

residuals in the Cheonan WTP, Cheonan, Korea. This 

treatment has a capacity of 414,000 m
3
/day and has 

served citizens living in North Cheoung-cheong 

province since December, 2003.  

2. Research Procedure 

The most important item in controlling post-chlorine 

is to model travel time as accurately as possible and to 

know the decay according to time. If chlorine decay is 

predicted, it is easy for the controller to decide desired 

input chlorine. In the following figure, design procedure 

is introduced. 

Travel Time Learning

Chlorine Decay Learning

NN (Flow & Level) 

Input Residual Chlorine
Learning 

Injection Rate
Learning

NN (Travel Time & Water_Temp)

NN (Sed_cl2 & Injection Rate)

NN (Desired_In_cl2 & Sed_cl2)

Fig. 2. Design Procedure 

3. Comparison of Learning Algorithm 

There are many learning algorithms which can 

predict output according to states. Applied algorithm is 

selected considering error and easy implementation. 

Test result is as follows:  

Table 1 Comparison of Learning Algorithm 

 NN(BP) ANFIS LR SVR 
APE 

(%) 

Trn. Chk. Trn. Chk. Trn. Chk. Trn. Chk. 

7.24 8.35 7.84 8.13 8.15 8.79 8.59 8.41 

As a result, neural network (back propagation) has 

the best result only in training data but its check data 

isn't best. It appears slightly over fitted. ANFIS has 

better result in training data compared to LR and SVR, 

and its check data has the best result. Also, ANFIS with 

fuzzy C-means clustering can reduce the number of 

rules which make implementation easier. Thus, ANFIS 

is selected as modeling algorithm for the process. 

 
Fig. 3. ANFIS Structure 

 

Layer 1 : Create fuzzy set with proper function 

 Oi
1 =  μ Ai(x)                        (2) 

μ Ai x =  1/⁡{1 +  
x−ci

ai
 

2b i
}            (3) 

Layer 2: Multiply the incoming signals and send the 

product out.  

wi =  μ Ai x  ×  μBi y , i = 1, 2        (4) 

Layer 3: Normalize the weight 

w i =  
w i

w1+ w2
                        (5) 

Layer 4: Compute the result of each node 

Oi
4 =  w i  (pix + qiy + ri)              (6) 

Layer 5: Compute the overall output as the summation 

of all incoming signals 

Oi
5 = overall output =   w i  ×  i fi =  

 w i  ×  i fi

 w i  i
  (7) 

The premise [ai ,bi,ci] and the consequent parameters 

[p i,q i,r i] can be chosen to minimize the following sum 

of squared error by least square estimate [10].  

𝑬 =  (𝐓𝐦 − 𝐎𝐦)𝑵
𝒎=𝟏

𝟐
              (8) 

 

III. RESULTS 

1. Simulation 

The following figure is the proposed structure to 

model and control post-chlorination process. 
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Fig. 4. Modeling and Controller 

At first, its variables are chosen by the use of 

correlation coefficient and prominent component 

analysis. All of modeling is based on neuro-fuzzy 
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inference system. If the system gives desired input 

according to states, PID controller try to get rid of its 

error. Other PID controller is used for cascade control, 

because this process has very long delay time. The 

result of simulation is as follow. 

A. Modeling 

- Estimate of travel time 

Table 2 Error according to Selected Variables 

Variables APE 

Level, Out_flow, Travel Time(n-1) 9.1% 

Level, Out_flow, Level_dot 9.2% 

Level, Out_flow, Out_flow_dot 9.6% 

Level, Fil_flow, Out_flow 8.1% 

Fig. 5. Estimate Result of Travel Time 

 

- Estimate of Out_cl2 

Table 3 Error according to Selected Variables 

Variables APE 

In_cl2, Travel time 2.21% 

In_cl2, Travel time, Water temp 2.16% 

Fig. 6. Estimate Result of Output Chlorine 

 

B. Controller 

 
Fig. 7 Old Controller 

 

 
Fig. 8. New NF+PID Controller 

 

Table 4 Comparison of Controller 

Old Controller New Controller 

Mean STDEV Mean STDEV 

0.746 0.0286 0.75 0.0038 

 

C. Simulation result 

Given the above figures, the output chlorine by old 

controller varies from 0.66mg/L to 0.82mg/L but new 

controller ranges from 0.723mg/L to 0.766mg/L. The 

major difference is whether travel time is fixed or not. 

While input of old controller is not changed a lot, neuro-

fuzzy system helps to calculate the desired input 

chlorine in real time. Additionally, PID controller would 

help to keep the desired output chlorine by controlling 

the offset. 

2. Experiment 

Control input given by neuro-fuzzy system was 

given from Sep 18 11:40 to Sep 19 01:00. Its output 

result would be affected 3 hours later owing to its delay 

at that time. Then, its real result is from Sep 18 14:40 to 

Sep 19 04:00. Before new input was given, 

sedimentation chlorine became fixed not to affect the 

output, and delay time became shorter from 30 to 5 
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minutes to get quick feedback. The experiment could be 

divided into 3 sections, which are before experiment, 

during experiment and after experiment. 

- Before experiment : Delay time =30min, Gain=0.5, 

Sedimentation chlorine considered. 

- During experiment: New input by neuro-fuzzy, Delay 

time =5min, Gain=0.5, Sedimentation chlorine not 

considered.  

- After experiment: Delay time =5min, Gain=0.5, 

Sedimentation chlorine considered. 

 
Fig. 9 Experiment result 

 

Table 5 Experiment Result 
Before Exp. During Exp. After Exp. 

Mean STDEV Mean STDEV Mean STDEV 

0.875 0.029 0.912 0.008 0.907 0.016 

 

A. Experiment result 

In the ―before experiment‖ section, its outputs are 

deviated because it doesn’t consider travel time and 

sedimentation chlorine. In ―During experiment,‖ new 

desired input chlorine is set according to its travel time 

and most output data are located from 0.90 to 0.92mg/L. 

It looks well controlled. Besides, the mean of ―during 

experiment‖ has an error from its desired output 

0.9mg/L. The result is that training data set is 

considered until August 23th and its environment is 

changed a little. To compensate for this, the following 

equation would be applied to desired input chlorine as a 

bias. 

 𝐵𝑖𝑎𝑠 =  1/n  (𝑛
𝑖=1 𝐷𝑒𝑠_𝑂𝑢𝑡_𝑐𝑙2𝑖 − 𝑂𝑢𝑡_𝑐𝑙2𝑖)  (9) 

Output chlorine rates are expected to move around its 

desired output. 

IV. CONCLUSION 

Present chlorine controller doesn’t consider travel 

time in real time until now, which usually relies on 

operator’s experience. It is supposed to be difficult to 

change it in real time. Here, travel time is calculated by 

neuro-fuzzy inference system. Even though it has some 

errors, output chlorine becomes much better than before. 

Its boundary becomes much shorter. It is expected to 

help to drink water with more pleasant characteristics.  
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