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Abstract: This paper presents the identification, prediction and control design for nonlinear strict-feedback systems 
with an input time-delay. The system is firstly transformed into a normal form by defining new state variables. A 
dynamical identification with a neural network (NN) is proposed to estimate the system states. The predictive NN 
weights are obtained without iterative calculations and utilized in constructing the adaptive predictor. Feedback control 
design using the predictive states is finally studied. Simulations are included to validate the effectiveness of the 
proposed method. 
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I. INTRODUCTION  
The control design for systems with input time-delay 

has been widely studied, e.g. [1-5] and references therein. 
For linear systems, the Smith predictor [1], sliding mode 
control [2] and dead time compensator [3] have been 
validated theoretically and practically. To deal with 
unknown nonlinearities, neural controllers were proposed 
in [4] and [5] for nonlinear time-delay systems. However, 
the employed local linearization methodologies are 
inapplicable to the system, where the delay is intrinsic in 
the plant (e.g. fluid control, temperature control). Tan and 
Cauwenberghe established one-step-ahead [6] and d-step-
ahead [7] predictors for nonlinear systems using neural 
networks. Lu and Tsai [8] proposed a neural generalized 
predictive control for process system. Nevertheless, these 
predictors mainly focus on the discrete systems, and 
iterative prediction calculations are required within the 
sample interval resulting in significant computation costs. 

In this paper, we study the neural predictor and control 
design for strict-feedback time-delay systems without the 
backstepping design. The system is firstly transformed 
into a normal form as in [10]. A neural network is then 
utilized in a dynamical identification to estimate the 
system states, and the NN weights and their derivative 
can be obtained. Predictive NN weights are deduced via 
Taylor series expansion and used to establish the state 
predictor. A feedback control with the predictive states is 
finally constructed to achieve the tracking. The closed-
loop system is guaranteed to be bounded. Compared to 
other NN-based predictors, the off-line learning phase, the 
past system information and iterative calculations are all 
avoided to reduce the computation costs. 

II. PROBLEM STATEMENT 
Consider a class of nonlinear systems with an input 

time-delay as 
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nx x x x= ∈" \ , 
( )y t ∈\  and ( )u t ∈\  are state variables, the output 

and input, respectively; ( ), 1,if i n=i "  are unknown but 
smooth nonlinear functions, , 1,ig i n= " are known 
constant gains, and τ  is a constant input delay. 

The objective of this paper is to find a control ( )u t , 
such that the output ( )y t  tracks a desired trajectory 

( )dy t . Inspired by [10], we can transform system (1) 
into a normal form by redefining the state variables as 
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where ( )( )2 2 1 1 1 1 1 1 2 1 2 2( ) ( ) / ( ) ( )x f x x f x g x g f xα = ∂ ∂ + + is 

an unknown function and 2 1 2g gβ =  is a known constant. 
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is an unknown function and 1 1

n
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known constant. 
From (2)~(5), we can rewrite system (1) as  
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As can be seen, by transforming the strict-feedback 
system (1) into the normal form (6) with the output 

1 1y z x= = , the backstepping design can be avoided. 
However, the newly defined states , 2, ,iz i n= "  are 
unavailable since the function ( )n xα  is unknown. 

A linear parameter neural network (LPNN) [4-5] can 
approximate a nonlinear function on a compact set Ω  as 

( ) ( ) ,T nQ Z W Z Zε∗= Φ + ∀ ∈ Ω ⊂ \  (7) 

with bounded weights 1 2[ , ]T L
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is a vector with ( )kΦ Z  being a sigmoid function. 
 

III. CONTROL DESIGN 
A. Identification with Neural Network 

For system (6), the following identification model is 
developed to estimate the states , 2, ,iz i n= " : 
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where ˆ , 1, ,iz i n= "  are the estimation of iz ; the vector 
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LW w w w  is the NN weights given by 
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with the parameters 0TF F= > , 0ek > , and ˆy y y= −�  
is the output measurement error. 

We can select appropriate positive parameters 1," na a  
such that following matrix A  is Hurwitz 
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and TA P PA Q+ = −  and PB C=  hold for symmetric 
positive definite matrices P  and Q . 

Define the identification error as ˆ( ) ( ) ( )x t z t z t= −� , the 

NN weight error as * ˆW W W= −� , and apply the NN 
approximation (7) on the unknown nonlinear function 

1
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= + ∑
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n i i
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equation from (6) and (8) as 
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B. Adaptive Predictor 

In identification (8), the NN weights ˆ ( ); 1,iw t i n= "  
contain the time-varying system information. Therefore, 
the following adaptive predictor can be proposed: 
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( )τ+ ∈\py t  are the predictions of future states and the 

output, and ˆ ( )τ+ ∈\LW t  denotes the predictive NN 
weights, which can be given as 
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Define the prediction error as ( ) ( ) ( )p px t z t x tτ τ= + − +� , 
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C. Control Design 

Denote ( 1)( ) [ , , ]−= � " n T
d d d dx t y y y  as the reference 

trajectory, then the control error and the filtered error 
between ( )px t τ+  and ( )dx t can be given as 

( ) ( ) ( )p dE t x t x tτ= + − , ( ) [ 1] ( )Tt E tδ λ=    (14) 

with 1 2 1[ , ]T
nλ λ λ λ −= "  an appropriate vector, such that 
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We can design the feedback control ( )u t  as 
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where 0rk >  is a positive control parameter.  
Remark 1. During each sample interval, the NN weights 

ˆ ( )W t  and ˆ ( )W t� in the identification (8) are obtained 

according to (9). Then ˆ ( )W t  and ˆ ( )W t�  are utilized in 
the predictor (11) to obtain the predictive weights 

ˆ ( )W t τ+ . Finally, the predictive states ( )px t τ+  and the 

term ˆ ( ) ( ( ))T
pW t x tτ τ+ Φ +  are employed in the controller 

(15) to deduce the control ( )u t . 

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 686



D. Stability Analysis 

We have the following results: 
Theorem 1. Consider the time-delay system (1) with the 
identification (8), the predictor (11) and the controller 
(15), then all signals in the closed-loop system are 
bounded. Moreover, the tracking error ( ) ( ) ( )dt x t x tϑ τ= + −   
is also bounded. 
Proof: It is known that the NN basis function ( )xΦ  is 
bounded, i.e. || ( ) || MxΦ ≤Φ  and || ( ) ( ) ||p Xx xΦ −Φ ≤ Φ  with 

positive constants 0MΦ ≥ , 0XΦ ≥ . We first select a 

Lyapunov function as -1
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where 1 M NC W=Φ , 2 [2 ( ) ( ) ( ) / ]( )M M M M M e X MC C F C kτλ λ λ= Φ + Φ Φ +Φ  
are positive constants. 

Moreover, consider 2 21 1ˆ ( ) || ||
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On the other hand, taking the time derivative of 

2
3 / 2V δ=  along (14) and (15), it can yield 

2
3 δδ δ= ≤ −��
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Then from (22) and (23), it can be deduced that 
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{ }1
2min ( ( ) 1/ ( ) ) / ( ),  / ( ),2m M M e M rQ k P C P k F kβ λ λ λ λ −= − − . 

According to Lyapunov theorem, the filtered error δ , 
the identification error x� , the prediction error px�  and 

the NN weight error W�  are all bounded. Furthermore, 
the control error E  is also bounded according to (14). 

Thus, the boundedness of NN weights ˆ ( )W t , ˆ ( )W t� , 
ˆ ( )W t τ+  and system states ˆ( )x t , ( )px t τ+ are guaranteed. 

Consequently, the control ( )u t  in (15) is also bounded. 
Finally, the tracking error between the system states 

( )x t τ+  and the reference trajectory ( )dx t is 
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then we know lim|| ( ) || lim|| ( ) ( ) || lim|| || lim|| ||p pt t t t
t x t E t x Eϑ

→∞ →∞ →∞ →∞
= + ≤ +� � , 

which implies that the closed-loop tracking error ( )tϑ  is 
also bounded.   □ 
 

IV. SIMULATION 
Example 1: Consider the following nonlinear system 

2
1 2 1

2
2 1 2 1 2

1

( ) ( ) 0.5 ( )

( ) 0.2(1 ( )) ( ) ( )sin( ( )) ( )
( ) ( )

x t x t x t

x t x t x t x t x t u t
y t x t

τ

⎧ = +
⎪

= − − + −⎨
⎪ =⎩

�
� (26) 

The reference signal is specified as ( ) sin(0.2 )π=dy t t . 
The simulation parameters are set as 1 26;  1= =a a , 1 1λ = , 

1rk = , 0.5( ) 2 / (1 ) 3xx e−Φ = + + , (20, , 20)F diag= "  and 
5ek = . The initial conditions are ˆ(0) (0) (0) 0i i pix x x= = =  

and ˆ (0) [0, ,0]TW = " .  
The tracking response of the controlled system with a 

time-delay 0.3τ = s is depicted in Fig.1. The top figure is 
the system output ( )y t  and the reference ( )dy t . The 
profile of system states 1( )x t , 2 ( )x t  and the control 
signal ( )u t  are provided in the middle and the bottom. 
As can be seen, the control and system states are all 
bounded. Moreover, the satisfactory tracking performance 
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is achieved since the effect of input time-delay and 
unknown nonlinearities can be compensated effectively 
by the proposed method. 
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Fig.1 Control performance 

 
Example 2: To further verify the proposed method, the 
following system as in [11] is utilized without the state 
delay term 

1 2

2 1 2 1 2

1

3 2 0.5 sin( ) sin(60 ) ( )
x x
x x x x x t u t
y x

π τ
=⎧

⎪ = − − + + + −⎨
⎪ =⎩

�
� (27) 

In this example, the reference signal is selected as 
( ) 0=dy t . The initial system conditions are chosen as 

1 2(0) 1.6; (0) 1x x= − = . In simulation, the parameters are 
specified as 1 23;  2= =a a , 1 10λ = , 10rk = , and the 
parameters of NN identification and predictor are given as 

0.1( ) 2 / (1 ) 0.5xx e−Φ = + − , (0.2, ,0.2)F diag= " , 5ek = . 
The initial conditions are chosen as ˆ (0) (0) 0i pix x= =  and 

ˆ (0) [0, ,0]TW = " . 
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Fig.2 Comparative control performance 

For comparison, the sliding model control presented in 
[11] is also provided. The system states under different 
controllers and the corresponding control signals are 
depicted in Fig.2. It is shown that both the sliding mode 
control and the proposed predictor-based control can 
guarantee the convergence of system states. However, the 
control signal of the predictor-based method is smoother 
than that of the sliding mode scheme. 

 

V. CONCLUSION 
A novel neural adaptive nonlinear state predictor is 

developed in this paper. The predictive NN weights can 
be obtained from the NN weights in the identification via 
Taylor series expansion. The proposed identification, 
prediction and control schemes can be implemented 
online without recursive calculations such that the 
computational costs can be reduced. Moreover, strict-
feedback systems are transformed into a class of normal 
systems such that the backstepping design can be avoided 
in the control design. 
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