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Abstract: This paper is devoted to the problem of non-fragile controller design for the trajectory tracking of mobile
robots. Firstly, the model of the mobile robots is exactly linearized via non-linear state feedback and proper coordinate
transformation under certain conditions. Secondly, the time-delay is added to the linearized model and the non-fragile
controller is designed for the trajectory tracking by employing linear matrix inequalities (LMIs) approach. Finally,
simulation examples are included to illustrate the effectiveness of the proposed controller.
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I. INTRODUCTION

The mobile robot can be regarded as an effective
extension of man’s motor ability, and therefore it is
sure to be indispensable in the course of recognition
and exploration of the world. For example, to achieve
the trajectory tracking, the nonlinear and nonholonomic
motion of the mobile robot must be considered. Oriolo et
al [1]. showed that dynamic feedback linearization was
an efficient design the tool to solve trajectory tracking
problem. Wang et al [2]. proposed novel, asymptotical,
nonlinear adaptive trajectory tracking control laws based
on Lyapunov stability theory. Dixon et al [3]. developed
a velocity field for the constrained mobile robot trajec-
tory, and formulated a differentiable controller for global
asymptotic velocity field tracking. In [4], an adaptive
controller for trajectory tracking was developed based
on the learning ability of wavelet network(WN). In [5],
the fuzzy control solution was introduced to resolve the
robustness of mobile robot trajectory tracking problem.
Liu et al [6]. used an artificial potential field to navigate
the mobile robot in a novel simple adaptive tracking
controller. To avoid premature convergence and trapping
into local minimum, a chaos genetic algorithm based
on population high-efficiency mutation (CGAPM) was
presented in [7]. And a novel vector field control method
based on nonlinear control algorithm was proposed for
the mobile robots in [8].

On the other hand, it is well known that the time-
delay usually occurs in the practical plants. Its existence
may affect the stability of the system seriously and
the dynamic performance of the system. Similarly, it
is important for the tracking control of mobile robots
to consider the time-delay effect, however it has been
attracting little attention.

Further, we know that the mobile robot is driven by

the DC motor. The designed control strategies need to
be digitized in order to realize control goal. In this
process, the small change of the control parameters
exists and may cause control failure, or even destroy
the system. L.H.Keel et al [9]. indicated that the tra-
ditional controller design method like optimal control
and robust control only lead to fragile controller. That
means that small offset of controller gain coefficient
will be likely to damage the stability of the closed-
loop system and degrade the performance. This requires
that the designed controller gain coefficient should have
sufficient adjustable redundancy or non-fragility in order
to meet different performance requirements.

In this paper, we design a non-fragile controller by
using LMI approach for the mobile robots with time-
delay. The paper is organized as follows. In Section
2, the equation of a nonholonomic mobile robot is
linearized via state feedback and the model of the
mobile robots with time-delay is introduced based on
the linearized model. The non-fragile trajectory tracking
controller is designed in Section 3. And finally, the
effectiveness of designed controller is verified by the
simulation in Section 4.

II. PROBLEM FORMULATION AND
PRELIMINARIES
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Fig. 1 The planar graph of a mobile robot
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In Fig. 1, XOY is the world coordinate system, XaOaYa
is the coordinate system fixed the mobile robot body ,Oa
is the center of the axle of two driving wheels, (x,y)
indicates the coordinate of the robot in world coordinate
system and θ is the angle of moving direction (right
angle to the wheel axis). v is the linear velocity of the
robot and ω is its angular velocity.

Suppose that the wheels of the mobile robot rotate
without slipping, the constraint can be denoted by

ẋsinθ − ẏcosθ = 0. (1)

Then the equation of the mobile robot with two
independently driving wheels can be obtained

ẋ = vcosθ
ẏ = vsinθ
θ̇ = ω

(2)

Introduce an auxiliary variable v̇ = a, and let

X = [x1 x2 x3 x4]T = [x y θ v]T ,

Y = [y1 y2]T = [x y]T , u =
[
a ω

]
.

Then the system (2) can be transformed to the following
form:

Ẋ = f (X)+g(X)u
Y = h(X) (3)

where

f (X) =




x4cosx3
x4sinx3

0
0


, g(X) =




0 0
0 0
0 1
1 0


,

h(X) =
[

1 0 0 0
0 1 0 0

]
X

Setting

ξ (t) = [y1 L f y1 y2 L f y2]T = [x1 x4cosx3 x2 x4sinx3]T

and u(t) = [acosx3−ωx4sinx3 asinx3 +ωx4cosx3], the
system (3) becomes:

ξ̇ (t) =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


ξ (t)+




0 0
1 0
0 0
0 1


u(t)

= Ãξ (t)+ B̃u(t)

Y (t) =
[

y1
y2

]
=

[
1 0 0 0
0 0 1 0

]
ξ (t) = C̃ξ (t)

(4)

Now, introducing time-delay in mobile robots, we
have:

ξ̇ (t) = Ãξ (t)+Aτ ξ (t− τ)+ B̃u(t)
Y (t) = C̃ξ (t)

(5)

where τ is constant time-delay. Consider the non-fragile
controller:

u(t) = (K +∆K)ξ (t) (6)

where K is the state feedback controller; ∆K = E∆(t)F

is the additive gain perturbation of the controller with
E,F the real matrices of known appropriate dimension,
∆(t) Lebesgue measurable matrix and ∆T (t)∆(t)≤ I.

Combining the system (5) and controller (6) yields
the following closes-loop system:

ξ̇ (t) = [Ã+ B̃(K +∆K)]ξ (t)+Aτ ξ (t− τ)
Y (t) = C̃ξ (t)

(7)

The objective of this paper is to design a non-fragile
controller (6) such that the closed-loop system (7) is
asymptotically stable.

Lemma 1: [10] Let E,F be the real matrices of
appropriate dimensions, and ∆(t) be time-varying matrix
with ∆T (t)∆(t)≤ I. Then, for any scalar ε > 0, we have

E∆(t)F +FT ∆T (t)ET ≤ εEET + ε−1FT F .
Lemma 2: [11] Let M > 0,L,Q > 0 be matrices of

appropriate dimension. Then
M +LT Q−1L < 0

if and only if
[

M LT

L −Q

]
< 0 or

[−Q L
LT M

]
< 0.

III. NON-FRAGILE CONTROLLER DESIGN

The following theorem gives the necessary and suf-
ficient condition for existence of non-fragile state feed-
back controller for system (5) when the controller has
additive gain perturbation.

Theorem 1: Given positive scalar τ , the system (7) is
asymptotically stable if there exist scalar ε > 0, matrices
P > 0,Q > 0 and R, such that the following linear matrix
inequalities hold.




S +ST εB̃E Aτ Q−1 P−1 P−1FT

∗ −εI 0 0 0
∗ ∗ −Q−1 0 0
∗ ∗ ∗ −Q−1 0
∗ ∗ ∗ ∗ −εI




< 0

(8)
where S = ÃP−1 + B̃R, ∗ expresses the corresponding
symmetric terms. And further, the state feedback con-
troller may be taken as K = RP.

Proof: For the system (7), define a common
Lyapunov function candidate

V = ξ T (t)Pξ (t)+
t∫

t−τ
ξ T (s)Qξ (s)ds (9)

where P,Q are solutions of equation (8).

V̇ =
[

ξ (t)
ξ (t− τ)

]T [
PÂ+ ÂT P+Q PAτ

AT
τ P −Q

][
ξ (t)

ξ (t− τ)

]

=
[

ξ (t)
ξ (t− τ)

]T

M

[
ξ (t)

ξ (t− τ)

]

(10)
where Â = Ã + B̃(K + ∆K) = Ã + B̃(K + E∆(t)F), M =[

PÂ+ ÂT P+Q PAτ
AT

τ P −Q

]
. If M < 0, then the system (7) is

asymptotically stable.
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Pre- and post- multiplying M by diagonal matrix[
P−1 0

0 I

]
and its transpose respectively, and let R =

KP−1, we can obtain
[

P−1 0
0 I

]
M

[
P−1 0

0 I

]

=
[

ÂP−1 +P−1ÂT +P−1QP−1 Aτ
AT

τ −P−1QP−1

]

=
[

S +ST + B̂+ B̂T +P−1QP−1 Aτ
AT

τ −Q

]

< 0
(11)

where S = ÃP−1 + B̃R and B̂ = B̃E∆(t)FP−1. According
to Lemma 2, we obtain




S +ST + B̂+ B̂T Aτ P−1Q
AT

τ −Q 0
QP−1 0 −Q


 < 0 (12)

Rewrite the above equation



S +ST Aτ P−1Q
AT

τ −Q 0
QP−1 0 −Q


+Σ1∆(t)Σ2 +(Σ1∆(t)Σ2)T < 0

(13)
where Σ1 =

[
B̃E 0 0 0

]T
,Σ2 =

[
FP−1 0 0 0

]
.

Then, from the Lemma 1, if there exists scalar ε > 0,
we have


S +ST Aτ P−1Q

AT
τ −Q 0

QP−1 0 −Q


+ εΣ1ΣT

1 + ε−1ΣT
2 Σ2 < 0

(14)
Note that Lemma 2 again, we have



S +ST εB̃E Aτ P−1Q P−1FT

∗ −εI 0 0 0
∗ ∗ −Q 0 0
∗ ∗ ∗ −Q 0
∗ ∗ ∗ ∗ −εI




< 0 (15)

Pre- and post-multiplying (15) by diagonal matrix
diag(I, I,Q−1,Q−1, I) and its transpose respectively, the
upper formula can be expressed by the following




S +ST εB̃E Aτ Q−1 P−1 P−1FT

∗ −εI 0 0 0
∗ ∗ −Q−1 0 0
∗ ∗ ∗ −Q−1 0
∗ ∗ ∗ ∗ −εI




< 0

(16)
And the state feedback controller is K = RP. This

completes the proof.
Obviously, if ∆(t) = 0, Theorem 1 degenerates to the

normal state feedback control.
Now applying the designed controller K in Theorem

1 to the mobile robots (5), we obtain

u(t) = Kξ =
[

acosθ −ωvsinθ
asinθ +ωvcosθ

]
.

IV. NUMERICAL EXAMPLES

Consider the systems (5)-(7) with

Aτ =




0.01 0 0 0
0 0 0 0
0 0 0.02 0
0 0 0 0


, τ = 0.2,

E =
[

1 0
0 1

]
, F =

[
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

]

∆1 =−I =
[−1 0

0 −1

]
,∆2 = I =

[
1 0
0 1

]
.

From Theorem 1, we get the non-fragile controller
by employing the LMI Toolbox in MATLAB

Kn f =
[−4.4453 −4.8047 −1.4766 −1.5234
−1.4766 −1.5234 −4.4453 −4.8047

]

and the normal state feedback controller is

Knormal =
[−2.9687 −3.2813 0 0

0 0 −2.9687 −3.2813

]
.

When the two controllers exist the perturbation ∆1,
they all can make the system stable, see Fig.2 and Fig.3.
Using the normal control with the perturbation ∆2, the
system becomes unstable (see Fig.4), while the non-
fragile controller with the perturbation ∆2 still makes
the system stable (see Fig.5).
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Fig.2 The control effect of the normal controller with ∆1
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Fig.3 The control effect of the non-fragile controller with ∆1
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Fig.4 The control effect of the normal controller with ∆2
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Fig.5 The control effect of the non-fragile controller with ∆2

Next, we apply the designed non-fragile controller K
to the trajectory tracking of the mobile robot system. We
hope the mobile robot to make the circular motion:

xd(t) = 0.5cos(0.01t),yd(t) = 0.5sin(0.01t),θd(t) = t.

Fig.6 is the mobile robot motion trajectory using the
non-fragile controller on the x−y plane. We can see that
the trajectory can converge to the expected trajectory
quickly.
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Fig.6 The mobile robot motion trajectory

V. CONCLUSIONS
In this paper, we have introduced non-fragile control

to the mobile robots with time-delay for the first time.
After exactly linearizing the model of the mobile robots
via non-linear state feedback and proper coordinate

transformation under certain conditions, we give the
model of mobile robots with time-delay. Based on
which, the non-fragile controller with the additive gain
perturbation is designed in order to make the mobile
robots asymptomatically stable. Finally, the proposed
non-fragile controller is used to the mobile robots tra-
jectory tracking control. Simulation results show that the
designed non-fragile controller has strong robustness to
controller gain perturbations which guarantee the fast
response and superior control effect.
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