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Abstract: The unscented transformation is known as a technique to firstly generate a set of 2n + 1 sigma points and
their weights, and secondly to propagate each sigma point value through a nonlinear function, where n denotes the
dimension of the random state variable. Note however that there are two cases in a discrete-time filtering problem:
one is the case where such a transformation is applied two times to the nonlinear model function and the nonlinear
measurement function separately by using different mean and covariance, whereas the other is the case where such a
transformation is basically applied to the nonlinear model function and the same sigma point values are only propagated
to the nonlinear measurement function. So, we here examine the performance difference between them in a particular
estimation problem. In addition, it is sometimes to encounter the case where for an unscented Kalman filter, the
original state is augmented with other system and measurement noises simultaneously as if the original state and
measurement noises are included in nonlinear functions, even though they are actually to be additive to each model
function. Therefore, we further check how much the performance improvement or degradation is, compared to the case
where there is no inconsistency in the model assumptions.
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I. INTRODUCTION

The nonlinear filtering problem has been extensively
studied and various methods are provided in litera-
ture. Among them, the most useful ones are the Ex-
tended Kalman Filter (EKF), the Ensemble Kalman
Filter (EnKF), the Unscented Kalman Filter (UKF), and
the Particle Filter (PF). Historically, the EKF is still the
most widely adopted approach to solve the nonlinear
estimation problem. It is based on the assumption that the
nonlinear system dynamics can be accurately modeled by
a first-order Taylor series expansion as shown by van de
Merwe [1]. The EnKF introduced by Evensen [2] is a
reduced rank filter which propagates the states through
nonlinearity and updates a relatively small ensemble of
samples from which an assumed Gaussian distribution
captures the main characteristics in the uncertainty. The
PF also uses a sampling approach to estimate the higher
order moments of the posterior probability distribution
by propagating and updating a number of particles, but
without assuming Gaussian statistics as explained by
Arulampalam et al. [3]. The UKF, which is a derivative-
free alternative to EKF, overcomes the differentiation
problem by using a deterministic sampling approach
demonstrated by Julier and Uhlmann [4] and Wan and
van der Merwe [5].

The state distribution is represented using a minimal

set of carefully chosen sample points, called sigma
points. This technique is used to linearize a nonlinear
function of a random variable through a linear regression
between n points drawn from the prior distribution of the
random variable. Since we are considering the spread of
the random variable during linearization, the technique
tends to be more accurate than Taylor series linearization
used in the EKF, particularly in the presence of strong
nonlinearities as proved by van de Merwe [1]. The 2n+1
sigma points, are chosen based on a square-root decom-
position of the prior covariance, where n is the state
dimension. These sigma points are propagated through
the true nonlinear function, without approximation, and
then a weighted mean and covariance is taken. This
approach results in approximations that are accurate to
the third order (Taylor series expansion) for Gaussian
inputs for all nonlinearities. For non-Gaussian inputs,
approximations are accurate to at least the second-order
as mentioned by Julier and Uhlmann [4], whereas the
linearization approach of the EKF results only in first
order accuracy.

However, there are two cases in a discrete-time filter-
ing problem: one is the case where such a transformation
is applied two times to the nonlinear model function
and the nonlinear measurement function separately by
using different mean and covariance, whereas the other
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is the case where such a transformation is basically
applied to the nonlinear model function and the same
sigma point values are only propagated to the nonlinear
measurement function. This paper examines the perfor-
mance difference between them in a particular estimation
problem. In addition, it is sometimes to encounter the
case where for an unscented Kalman filter, the original
state is augmented with other system and measurement
noises simultaneously as if the original state and mea-
surement noises are included in nonlinear functions, even
though they are actually to be additive to each model
function. Therefore, we further check how much the
performance improvement or degradation is, compared
to the case where there is no inconsistency in the model
assumptions.

The structure of this paper as follows: In Section II we
describe the problem statement for applying a difference
set of sigma points of Kalman Filter to propagate non-
linear model function and update nonlinear measurement
function. An example is presented in Section III, in
which the effect of a different set of sigma points
applied to nonlinear model and measurement functions
is discussed. The paper is concluded in Section IV.

II. UNSCENTED KALMAN FILTER
The basic framework for the UKF involves the esti-

mation of the state for discrete-time nonlinear dynamic
system:

xk+1 = f (xk, uk) + wk (1)

yk = h (xk, uk) + vk (2)

where xk represents the n-dimensional unobserved state
of the system, uk is a known exogenous input, and yk

is the m-dimensional observed measurement signal. The
system noise is represented by wk and the observation
noise is given by vk, where these noises are uncorrelated
each other, but with their covariances Qk and Rk,
respectively. The standard UKF implementation uses the
following weight definitions of {w(i)}, where w

(m)
0 =

λ
λ+n , w

(c)
0 = w

(m)
0 + (1 − α2 + β) and w

(c)
i = w

(m)
i =

1
2(n+λ) . λ = α2 + (n + κ) − n and γ =

√
n + λ are

scaling factors. The constant α determines the spread
of the sigma points around its mean and is usually set
ranging from 10−4 ≤ α ≤ 1. κ is a secondary scaling
parameter (set to 0 for state estimation). The β is used
to incorporate prior knowledge of the distribution of xk

and β = 2 for Gaussian distributions.
We now evaluate this nonlinear system using two

different approaches of transformation of sigma point.
In the first case, the transformation of sigma points is
applied two times to the nonlinear model function and
the nonlinear measurement function separately by using
different mean and covariance, whereas the other is the
case where such a transformation is basically applied to
the nonlinear model function and the same sigma point
values are only propagated to the nonlinear measurement
function. In addition, we investigate the case where
for an unscented Kalman filter, the original state is

augmented with other system and measurement noises
simultaneously as if the original state and measurement
noises are included in nonlinear functions, even though
they are actually to be additive to each model function.

1. Two times transformation of sigma points
In this case, generated sigma points are propagated

two times through a nonlinear model function as well
as nonlinear measurement function, respectively. The
algorithm for this case can be summarized as Table 1.

Table I. UKF algorithm with two-times transformation
of sigma points

χk−1 = [x̂k−1 · · · x̂k−1] + γ[0
√

Pxk−1 −
√

Pxk−1 ]
(3)

χ∗
i,k = f(χi,k−1, uk−1) (4)

x̂−
k =

2n∑
i=0

w
(m)
i χ∗

i,k (5)

P−
xk

= Qk−1 +
2n∑
i=0

w
(c)
i (χ∗

i,k − x̂−
k )(χ∗

i,k − x̂−
k )T (6)

χ−
k = [x̂−

k · · · x̂−
k ] + γ[0

√
P−

xk −
√

P−
xk ] (7)

Yi,k = h(χ−
i,k, uk) (8)

ŷ−
k =

2n∑
i=0

w
(m)
i Yi,k (9)

Pŷk
= Rk +

2n∑
i=0

w
(c)
i (Yi,k − ŷ−

k )(Yi,k − ŷ−
k )T (10)

Pxkyk
=

2n∑
i=0

w
(c)
i (χ−

i,k − x̂−
k )(Yi,k − ŷ−

k )T (11)

Kk = Pxkyk
P−1

ŷk
(12)

x̂k = x̂−
k + Kk(yk − ŷ−

k ) (13)

Pxk
= P−

xk
− KkPŷk

KT
k (14)

2. Single transformation of sigma points
In this case, generated same sigma points are prop-

agated through a nonlinear model function as well as
nonlinear measurement function [8]. The algorithm of
this case can be described as Table 2.

Table 2. UKF algorithm with single transformation of
sigma points

χk−1 = [x̂k−1 · · · x̂k−1] + γ[0
√

Pxk−1 −
√

Pxk−1 ]
(15)

χi,k = f(χi,k−1, uk−1) (16)

x̂−
k =

2n∑
i=0

w
(m)
i χi,k (17)
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P−
xk

= Qk−1 +
2n∑
i=0

w
(c)
i (χi,k − x̂−

k )(χi,k − x̂−
k )T (18)

Yi,k = h(χi,k, uk) (19)

ŷ−
k =

2n∑
i=0

w
(m)
i Yi,k (20)

Pŷk
= Rk +

2n∑
i=0

w
(c)
i (Yi,k − ŷ−

k )(Yi,k − ŷ−
k )T (21)

Pxkyk
=

2n∑
i=0

w
(c)
i (χi,k − x̂−

k )(Yi,k − ŷ−
k )T (22)

Kk = Pxkyk
P−1

ŷk
(23)

x̂k = x̂−
k + Kk(yk − ŷ−

k ) (24)

Pxk
= P−

xk
− KkPŷk

KT
k (25)

3. State augmented case
In this section, we investigate the effect when the

original state is augmented with other system and mea-
surement noises simultaneously [9] as if the original
state and measurement noises are included in nonlinear
functions, even though they are actually to be additive
to each model function. Note however that a single set
of generated sigma points are used to evaluate the result.
The algorithm can be summarized as in Table 3.

Table 3. UKF algorithm with an augmented state
vector

xa
k =

[
xT

k wT
k vT

k

]T
, P a

xk
= diag (Pxk

, Qk, Rk)
(26)

χa
k−1 = [x̂a

k−1 · · · x̂a
k−1] + γ[0

√
P a

xk−1
−

√
P a

xk−1
]

(27)
χx

i,k = f(χx
i,k−1, uk−1) + χw

i,k−1 (28)

x̂−
k =

2L∑
i=0

w
(m)
i χx

i,k (29)

P−
xk

=
2L∑
i=0

w
(c)
i (χx

i,k − x̂−
k )(χx

i,k − x̂−
k )T (30)

Yi,k = h(χx
i,k, uk) + χv

i,k−1 (31)

ŷ−
k =

2L∑
i=0

w
(m)
i Yi,k (32)

Pŷk
=

2L∑
i=0

w
(c)
i (Yi,k − ŷ−

k )(Yi,k − ŷ−
k )T (33)

Pxkyk
=

2L∑
i=0

w
(c)
i (χx

i,k − x̂−
k )(Yi,k − ŷ−

k )T (34)

Kk = Pxkyk
P−1

ŷk
(35)

x̂k = x̂−
k + Kk(yk − ŷ−

k ) (36)

Pxk
= P−

xk
− KkPŷk

KT
k (37)

Note here that L denotes 2n + m, χx
i,k−1, χw

i,k−1,
and χv

i,k−1 denote the i-th column of χx
k−1, χw

k−1,
and χv

k−1 which are also the components of χa
k−1 =

[(χx
k−1)

T (χw
k−1)

T (χv
k−1)

T ]T . Note also that n in
the weights appearing in the former algorithms should
be replaced by L for the present algorithm.

III. AN EXAMPLE APPLICATION
In this section we consider the problem that a vehicle

enters the atmosphere at high altitude and at a very high
speed. The position of the body is to be tracked by
a radar which accurately measures range and bearing.
This type of problem has been identified by Mehra [10],
Austin and Leondes [11] and Athans et al. [12] as being
particularly stressful for filters and trackers because of
the strong nonlinearities exhibited by the forces which
act on the vehicle. There are three types of forces which
act: i.e., (1) the most dominant is aerodynamic drag,
which is a function of vehicle speed and has a substantial
nonlinear variation in altitude; (2) gravity force which
accelerates the vehicle towards the centre of the earth;
and (3) random buffeting force terms. The effect of these
forces gives a trajectory of the form that initially the
trajectory is almost ballistic but as the density of the
atmosphere increases, drag effects become important and
the vehicle rapidly decelerates until its motion is almost
vertical. The tracking problem is made more difficult by
the fact that the drag properties of the vehicle might be
only very crudely known.

This tracking system should be able to track an object
which experiences a set of complicated, highly nonlinear
forces. These depend on the current position and velocity
of the vehicle as well as on certain characteristics which
are not known precisely. The filter’s state space consists
of the position of the body (x1 and x2), its velocity (x3

and x4) and a parameter of its aerodynamic properties
(x5). The vehicle state dynamics are

ẋ2(k) = x4(k)
ẋ2(k) = x4(k)

ẋ3(k) = D(k)x3(k) + G(k)x1(k) + v1(k)
ẋ4(k) = D(k)x4(k) + G(k)x2(k) + v2(k)

ẋ5(k) = x3(k)

(38)

where D(k) is the drag-related force term, G(k) is
the gravity-related force term and v(k) are the pro-
cess noise terms. Defining R(k) =

√
x2

1(k) + x2
2(k)

as the distance from the center of the Earth and
V (k) =

√
x2

3(k) + x2
4(k) as absolute vehicle speed

then the drag and gravitational terms are D(k) =
−β(k) exp

{
R0−R(k)

H0

}
V (k), G(k) = −G m0

r3(k) and
β(k) = β0 exp x5(k).

For this example, the parameter values are β0 =
−0.59783, H0 = 13.406, Gm0 = 3.9860 × 105 and
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R0 = 6374 and reflect typical environmental and ve-
hicle characteristics. The parameterization of the ballis-
tic coefficient, β(k), reflects the uncertainty in vehicle
characteristics. β0 is the ballistic coefficient of a typical
vehicle and it is scaled by exp x5(k) to ensure that its
value is always positive. This is vital for filter stability.
The motion of the vehicle is measured by a radar which
is located at (xr, yr). It is able to measure range r and
bearing θ at a frequency of 10Hz, where

rr(k) =
√

(x1(k) − xr)2 + (x2(k) − yr)2 + w1(k)
(39)

θ(k) = tan−1

[
x2(k) − yr

x1(k) − xr

]
+ w2(k) (40)

w1(k)and w2(k) are zero mean uncorrelated noise pro-
cesses with variances of 1 m and 17 mrad respectively.
The high update rate and extreme accuracy of the sensor
means that a large quantity of extremely high quality
data is available for the filter. The true initial conditions
for the vehicle are

x (0) =

⎛
⎜⎜⎜⎜⎝

6500.4
349.14
−1.8093
−6.7967
0.6932

⎞
⎟⎟⎟⎟⎠ ,

P (0) = diag(10−6, 10−6, 10−6, 10−6, 0)

In other words, the vehicle’s coefficient is twice the
nominal coefficient.

The vehicle is buffeted by random accelerations,

Q (k) = diag(2.4046 × 10−5, 2.4046× 10−5, 0)

The initial conditions assumed by the filter are,

x (0) =

⎛
⎜⎜⎜⎜⎝

6500.4
349.14
−1.8093
−6.7967

0

⎞
⎟⎟⎟⎟⎠ ,

P (0) = diag(10−6, 10−6, 10−6, 10−6, 1)

The filter uses the nominal initial condition and, to
offset for the uncertainty, the variance on this initial
estimate is 1. Both filters were implemented in discrete
time and observations were taken at a frequency of
10 Hz, but the integration step was set to be 50 ms which
meant that two predictions were made per update.

IV. CONCLUSION
In this paper, we have examined three cases related

to sigma points of unscented transformation of non-
linear model and measurement functions. In the first
case, the sigma points are applied two times to the
nonlinear model and measurement functions separately
by using different mean and covariance. In the second
case, the transformation is once applied to the nonlinear

model function and the same sigma point values are
only propagated to the nonlinear measurement function.
Lastly, the performance of an unscented Kalman filter
was further evaluated for the case where the original state
is augmented with other system and measurement noises
simultaneously as if the original state and measurement
noises are included in nonlinear functions, even though
they are actually to be additive to each model function.
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