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Abstract
This paper proposes a method for adapting robot’s

perception on fuzzy linguistic information by evaluat-
ing vocal cues. Robot’s perception on fuzzy linguistic
information such as “very little” depends on the en-
vironmental arrangement and the user’s expectations.
Therefore robot’s perception on the corresponding en-
vironment is modified by acquiring user’s perception
through vocal cues. Fuzzy linguistic information re-
lated to primitive movements are evaluated by a be-
havior evaluation network (BEN). Vocal cue evalua-
tion system (VCES) is utilized to evaluate the vocal
cues for modifying the BEN. The proposed system is
implemented by a PA-10 robot manipulator.

1 Introduction

Voice communication is a better option among the
other alternatives for human-robot interaction. Abil-
ity of the robot companion to understand the un-
certain information is crucial for effective human-
robot interaction. A successful human-friendly robot
equipped with human-like voice communication capa-
bilities will be able to help disabled people, to as-
sist the aged people, to help in complex tasks such
as surgery, etc. [1].

In Pulasinghe et al. [2], robot control by using
information-rich voice commands such as “move a
very little forward” has been studied. Generally, the
voice commands, which include fuzzy linguistic infor-
mation are referred as fuzzy voice commands (FVCs)
[3]. The quantitative assessment for such informa-
tion depends on the environmental conditions and the

user’s expectations. The main limitation of the above-
mentioned methods is that the system of understand-
ing and quantifying the fuzzy linguistic information in
voice commands is predetermined. Normally, humans
possess a natural ability of adapting to other humans
and artifacts. The mutual adaptation is important in
acquiring the information that included in the voice
commands in human-human communications [4].

Therefore this paper proposes a method for inter-
preting fuzzy linguistic information by adapting the
robot’s perception based on user’s perception on cor-
responding environment. Here, the user’s perception
is acquired based on vocal cues. The system overview
is discussed in section 2. Next section 3 discusses the
adaptation process of the robot’s perception based on
vocal cues. Finally, summary is presented.

2 System Overview

We have proposed a method to understand FVCs
by evaluating fuzzy linguistic information based on
user’s guidance. Functional overview of the proposed
method is shown in Fig. 1. Vocal cues and FVCs are
fed into the VCES and the BEN respectively. Here,
end-effector movements of a manipulator are consid-
ered as the primitive behaviors for the proposed sys-
tem. The BEN is utilized to evaluate the primitive
behaviors and implemented by using a fuzzy-neural
network. The VCES is introduced to evaluate the vo-
cal cues. If the user command is a vocal cue, the BEN
is adapted based on the assessment of the movement
error e. If the user command is an FVC, the cor-
responding primitive behavior is activated and fuzzy
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Figure 1: Functional overview of the proposed system.

linguistic information is evaluated by the BEN. In ad-
dition, the user’s willingness to change the robot’s per-
ception is identified as a parameter that is capable of
improving the adaptation process by acquiring the in-
formation related to repetition of vocal cues. After the
adaptation phase, the system can be used to navigate
the tip of the robot manipulator by using FVCs.

3 Adaptation of Robot Perception

A quantitative assessment for a fuzzy linguistic
term such as “ little” highly depends on the environ-
mental conditions. Therefore, it is proposed to acquire
the user’s desire through vocal cues for adapting the
robot’s perception toward the user’s perception.

3.1 Behavior Evaluation Network

Fuzzy implications in FVCs are interpreted by the
BEN. The corresponding primitive movement is iden-
tified based on the action and the action modifica-
tion phrases. Fuzzy linguistic terms are evaluated and
quantified based on the previous output of the corre-
sponding action. The proposed structure is shown in
Fig. 2. The available actions are grouped into three
action groups by considering the similarity of move-
ments and shown in Table 1. Separate behavior eval-
uation sections are proposed for each action group in
the BEN [5].

Layer A transmits the user commands directly to
the next layer. Layer B acts as an action selection
layer. Layer C consists of two types of nodes; one is
a command node to pass the fuzzy predicate included
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Figure 2: Fuzzy-neural network for the BEN.

Table 1: Fuzzy voice motion commands
Action groups Actions Modification

G1 Move forward
Move backward very little

G2 Move left little
Move right (medium)

G3 Move up far
Move down

in the user command and the other is a node to ac-
quire the previous value of the corresponding action.
Layer D acts as the fuzzification layer of the fuzzy-
neural network. Layer F links the fuzzy antecedent
part to the consequent part. Any node tof kth action
represents a triangular membership function with cen-
ter ak

t ∈ [(ak
t )L, (ak

t )H ] and width bk
t ∈ [(bk

t )L, (bk
t )H ]

where t = 1, ..., T . The nodes in the final layer gen-
erate the output and act as the defuzzification layer.
Then the output can be formulated based on the sum-
product composition for Mamdani fuzzy system [6]:

Ak =
∑T

t=1 uk
t ak

t bk
t∑T

t=1 uk
t bk

t

(1)

The initial membership functions for the previous
movement and the new movement are defined by as-
suming the uniform distribution over the universe of
discourse. Here, the membership function for the pre-
vious distance and the new distance are used to ini-
tialize the corresponding parameters of the layer D
and layer G respectively. The connection weights of
the layer G are adjusted by applying the backproper-
gation algorithm in the training phase based on the
movement error.
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3.2 Vocal Cue Evaluation System

The VCES is introduced to evaluate the vocal cues
for assessing the movement error e. A vocal cue in-
cludes user’s directives to modify the robot behaviors.
VCES is realized by using a fuzzy inference system.
The fuzzy linguistic information in the vocal cue is
interpreted by assuming that the behavior change de-
pends on the robot movement observed by the user.
Therefore, the observed robot movement and the vo-
cal cue are considered as the inputs of the fuzzy infer-
ence system. The evaluated error is the output. The
user feedback consists of a set of command components
(i.e. “Too Large,” “Slightly Large,” “Good,” “Slightly
Small,” and “Too Small”) that are considered as sin-
gleton membership functions.

3.3 Adaptation of Behavior Evaluation
Network

The BEN is adapted toward the environmental con-
ditions based on the user’s guidance. In the training
phase, the BEN is adapted based on the movement
error that is calculated by the VCES. The training
process is continued by considering a selected set of
tasks until the user feels a satisfactory level of robot’s
movements. Satisfactory level of the user toward the
robot’s movements for kth action group ξk ∈ [0, 1] is
defined by

ξk =
Nk

G

Nk
T

(2)

where, Nk
G is the number of user feedback “Good”

in robot’s movements of action group k from number
of total vocal cues Nk

T , which is from recent previous
movements.

User’s willingness to change the robot’s perception
is identified as a parameter that can extract the user’s
motivation to change an assessment for a particular
fuzzy linguistic term by considering a series of vocal
cues. Therefore the user’s willingness to change the
robot’s perception for ath fuzzy predicate in kth action
group is defined by

ωk
a = (1 − ξk)

Nk
T∑

m=1

βm (3)

Here, the component for user’s willingness to change
the robot’s perception from the vocal cue related to
mth previous movement is βm.

Aadaptation of the BEN is implemented by training
the parameters of the membership functions for new
distance corresponding to the parameters of the layer

G. The membership parameter training corresponding
to the network weight training for the tth node and its
neighboring nodes of kth action at the (` + 1)th time
step are given by

ak
t (` + 1) =

 ak
t (`) + ηek

1uk
t if ak

t (` + 1)
∈ [(ak

t )L, (ak
t )H ]

ak
t (`) otherwise

(4)

bk
t (` + 1) =

 bk
t (`) + ηek

2uk
t if bk

t (` + 1)
∈ [(bk

t )L, (bk
t )H ]

bk
t (`) otherwise

(5)
here, η represents the learning rate. ek

1 and ek
2 are

modified values of movement error e, which is decided
by the VCES based on the vocal cues and calculated
by

ek
i = δi(1 + |ωk

a |)fke, i = 1, 2 (6)

δ1 and δ2, where 0 < δ1, δ2 ≤ 5, are defined to match
the corresponding ranges. ωk

a is the user’s willingness
to change the robot’s perception for ath fuzzy predi-
cate in kth action group. The excitatory function fk

for kth action group is defined accordingly.

4 Summary

A set of tasks, which consists of sequences of prim-
itive movements were used in the adaptation phase.
The proposed system was implemented based on 7-
DOF PA-10 robot manipulator. The end-effector
movements of the robot manipulator were used as
the primitive behaviors. The parameters related to
the adaptation of the BEN were chosen as η = 0.1,
δ1 = 1.5, and δ2 = 4.5 experimentally.

The adaptation process was continued until the user
satisfied with the robot’s movements. The user’s sat-
isfaction was identified based on a satisfactory limit of
90% (i.e. for all ξk = 0.9 where k = 1, 2, 3). Variation
of the satisfactory levels of action group G2 by consid-
ering the user’s willingness to change the robot’s be-
havior and without considering it are shown in Fig. 3.
The final set of parameters for the membership func-
tions of new distance are shown in Table 2. The uni-
verse of discourse of the membership functions for pre-
vious distance is also adjusted accordingly.

According to the results, the manipulator move-
ments for the user commands containing fuzzy lin-
guistic terms “very little” and “ little” were reduced
in all the action groups. The evaluated values of
the user commands containing fuzzy linguistic terms
“medium” and “far” were increased in the movements
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Table 2: The final set of parameters for membership functions of new distance after the adaptation

Action Parameters of the membership function for new distance [mm]
group V V S V S S B V B V V B F V F V V F

a1 a2 a3 a4 a5 a6 a7 a8 a9

(Initial) 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00
G1 16.88 28.34 34.07 47.08 71.11 84.32 87.21 82.67 39.70
G2 19.06 36.05 37.03 48.41 68.67 97.33 130.14 115.12 73.16
G3 17.08 33.12 29.25 23.26 25.66 35.08 41.49 45.81 23.97

b1 b2 b3 b4 b5 b6 b7 b8 b9

(Initial) 0.00 25.00 50.00 75.00 100.00 125.00 150.00 175.00 200.00
G1 0.00 11.41 25.36 70.62 132.42 177.99 208.07 227.01 247.86
G2 0.00 11.23 29.80 72.61 128.76 197.49 272.46 308.52 349.25
G3 0.00 10.81 19.37 34.88 62.99 101.62 135.74 156.92 179.72
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Figure 3: Variation of satisfactory level with number of
movements for action group G2. The Variation with-
out considering the user’s willingness and with con-
sidering the user’s willingness are represented by blue
continuous line and Red dotted line respectively.

of action group G1 and G2 and reduced in the move-
ments of action group G3. This particular result im-
plies that the robot movements for FVCs were per-
formed as expected by the user according to the con-
textual information. The user’s capability of using
voice commands including fuzzy linguistic information
for coarse and fine movements is also enhanced. The
number of voice commands required to complete a par-
ticular task was reduced. In addition, the possibility
of occurring overshoots also minimized. Finally, the
adaptation of the system based on the environment
improved the overall usability of the system.
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