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Abstract 
We present the design philosophy, the implementation 
and various applications of XML-based genetic pro-
gramming (GP) framework (XGP). The key feature of 
XGP is the distinct representation of genetic programs as 
DOM-parse trees featuring corresponding flat XML-text. 
XGP contributes to the achievement of (i) fast prototyp-
ing of GP by using the standard built-in API of 
DOM-parsers for manipulating the genetic programs, (ii) 
human-readability and modifiability of the genetic rep-
resentations (iii) generic support for the representation of 
grammar of strongly-typed GP using W3C-standardized 
XML-schema; and (iv) inherent inter-machine migrat-
ability of the text-based genetic representation (i.e., the 
XML text) in the distributed implementations of GP. 

 

Keywords: genetic programming, strongly-typed genetic 
programming, genetic representation, XML, DOM. 

1 Motivation 

Developing controllers of mobile autonomous robots 
is often performed as a sequence of simulated off-line 
design (phylogenetic learning) of the robot’s software 
model followed by on-line adaptation (ontogenetic 
learning) on the physical robot situated in real environ-
ment. Justification to incorporate off-line software simu-
lation into the process of robots controller design comes 
from the facts that verification of robot behavior on 
physical robots is extremely time consuming and often 
dangerous for the robot and surrounding environment. 
These arguments in favor of software simulation of con-
troller as a process, which precedes the physical design 
and online learning on real robot become even more 
relevant within the context of recently emerged trends in 
robotics such as investigating the social behavior, the role 
and value of communication in emergent coherence, co-
operation and collaboration in the robots’ societies situ-
ated in inherently competitive or cooperative environ-
ments. Simulating robot controllers as software agents 
and focusing on the model of their relevant features is 
viewed as a promising way to address the above men-
tioned shortcomings of direct verification of behavior on 
physical robots. 

GP, which we propose as an approach for offline 
learning implies that the agent’s code is automatically 
designed by computer system via simulated evolution 
employing selection and survival of the fittest in a way 

similar to the evolution of species in the nature. While 
for many tasks handcrafting the agent code can be seen 
as natural approach, it might be unfeasible for most of 
real-world problems due to their typically enormous 
complexity. Moreover, in many problems the challenge is 
to develop a solution, which is competitive or even better 
than human-designed one. Such a solution might be well 
beyond the abilities of human to handcraft it.  

The software model of the evolvable robot’s control-
ler should fulfill the basic requirements of being adequate, 
fast running, and quickly developed. Considering the 
adequacy of the model as beyond the scope of this 
document, we intend to highlight the issues related to the 
efficiency of the system (in terms of reduced developing- 
and execution time) for evolving agent’s behavior. The 
typically slow developing time of GP stems from the 
highly specific semantics of main attributes of GP (rep-
resentation, initial population, genetic operations and 
fitness evaluation) and the lack of generic support to 
these attributes in 3G algorithmic languages and corre-
sponding software engineering standards. Developing 
time of GP can be significantly reduced incorporating 
commodity-off-the-shelf software components and stan-
dards in software engineering of GP. The runtime of GP 
can be reduced as a cumulative result of reduced compu-
tational effort (the amount of individuals that should be 
processed in order to obtain a solution with specified 
probability) and increased computational performance 
(the amount of individuals evaluated per unit of time). 

The objective of our research is to develop a genetic 
representation of the evolvable autonomous agents, 
which based on commodity-off-the-shelf software com-
ponents and widely adopted industrial standards, would 
facilitate the achievement of easy and quick development 
phase of GP and would contribute to the achievement of 
better computational effort. The long-term aim is to em-
ploy such a representation in our research on the emer-
gence and the survival value of social behavior and 
communication in multi-agent systems. 

The remaining of the document is organized as fol-
lows. Section 2 introduces GP as algorithmic paradigm 
for offline learning of behavior of predator agents in 
predator-prey multi-agent systems (MAS). It also elabo-
rates the proposed approach of representing evolvable 
agents (genetic programs) as DOM-parsing trees and 
discusses its design-time and runtime-related implica-
tions. Section 3 presents the result of verification of our 
approach on predator-prey pursuit problem. Conclusion 
is drawn in Section 4.  
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2 Approach 
2.1 Algorithmic Paradigm 

We consider a set of stimulus-response rules as a 
natural way to model the reactive behavior of autono-
mous agents which in general can be evolved using artifi-
cial neural networks, genetic algorithms, and GP.  GP is 
a domain-independent problem solving approach in 
which a population of computer programs (individuals) is 
evolved to solve problems [2]. The simulated evolution 
in GP is based on the Darwinian principle of reproduc-
tion and survival of the fittest. In GP individuals are rep-
resented as parsing trees whose nodes are functions, vari-
ables or constants. The nodes that have sub-trees are 
non-terminals - they represent functions where the 
sub-trees represent the arguments to function of that node. 
Variables and constants are terminals – they take no ar-
guments and they always are leaves in the parsing tree. 
The set of terminals for evolving agent’s behavior in 
predator-prey MAS [3] includes the relevant stimuli such 
as perceptions (e.g. distance and visible angle to various 
objects in the world), its own state, etc.; and the response 
(actions) which the agent is able to perform. The most 
relevant functions (non-terminals) are the arithmetical 
and logical operators (>, <, =, +, - , etc.), and the IF-THEN 
function, establishing the relationship between certain 
stimulus and corresponding response. A sample stimu-
lus-response rule is shown in Figure 1. It expresses a 
reactive behavior of turning to the bearing (angle) of the 
peer agent (Peer_a) plus 10 (degrees) as a result of 
stimulus of distance to that agent (Peer_d) being less 
than 20 (mm). A parsing tree of rule, depicted in Figure 1 
is shown in Figure 2. 

 
     IF (Peer_d<20) THEN Turn(Peer_a+10) 

Figure 1. Sample stimulus-response rule governing the agent 
behavior.  

 
 
 
 
 
Figure 2. Sample stimulus-response rule represented as a pars-
ing tree in GP.  

 
Parsing-tree representation and its flat equivalents 

(LISP S-expression, postfix or prefix notations) are typi-
cally maintained and manipulated by GP-systems in a 
customized way. Therefore, an eventual tailoring of the 
available general purpose GP-systems for the task of 
evolving autonomous agents would be a time consuming 
approach. Design of GP-system from scratch would be 
(if not the only feasible) at least faster and more flexible 
way, providing that the implementation of main attributes 
of GP is based on widely adopted industrial standards 
and off-the-shelf technologies. 

 
2.2 Genetic Representation 

Inspired by flexibility and recently emerged wide-
spread adoption of document object model (DOM) and 

extensible markup language (XML), we propose an ap-
proach of representing genetic program as a 
DOM-parsing tree featuring corresponding flat XML text. 
Our additional inspiration comes from the fact that de-
spite of the reported use of DOM/XML for representing 
computer architectures, source codes, and agents’ com-
munication languages we are not aware about any at-
tempts to employ this technology for representing ev-
olvable structures such as genetic programs in generic, 
standard, and portable way. Our approach implies per-
forming genetic operations on DOM-parsing tree using 
off-the shelf, platform- and language neutral 
DOM-parsers, and using XML-text representation as a 
format, feasible for migration among the computational 
nodes in eventual distributed GP.  

The DOM-parsing tree of the sample rule considered 
earlier (Figure 1) looks in exactly the same way as pars-
ing tree in canonical representation of genetic programs 
(Figure 2). However the flat representation of the rule is 
XML (Figure 3), rather than LISP S-expression. 
 

<GP> 
  <IF-THEN> 
    <LE> 
      <PERC>Peer_d</PERC> 
      <PERC>20</PERC> 
    </LE> 
    <TURN> 
      <PLUS> 
        <PERC>Peer_a</PERC> 
        <PERC>10</PERC> 
      </PLUS> 
    </TURN> 
  </IF-THEN> 
</GP> 

Figure 3. XML representation of stimulus-response rule in GP. 

2.3 Design-time Implications 
In contrast to the typical approaches to manipulate 

parsing trees using custom code and representations, the 
proposed XML-based genetic programming (XGP) offers 
benefits of requiring minimum programming efforts and 
allowing developers to use the software platform, devel-
oping language, and/or programming paradigm which 
better fits the aims of concrete implementation of GP. 
These benefits are result of: 
• Use of API of DOM-parsers: parsing tree of genetic 

program is manipulated using built-in API of 
DOM-parsers, 

• Platform neutrality of parsers: DOM-parsers are avail-
able for virtually any of widely used software plat-
forms (e.g., as Java classes), facilitating the portability 
of GP across different software platforms, 

• Language neutrality of parsers: DOM-parsers are also 
available as language-neutral components (e.g. Micro-
soft COM), offering the same programming model of 
parsing trees regardless of the language employed to 
develop the code of GP that manipulates them, and 

• Paradigm neutrality of parsers: DOM-parsers are 
available for programming paradigms, such as data-
base stored procedures, web-client and web-server-side 
scripts, etc.  

 
2.4 Run-time Implications 

The potential strength of GP to automatically evolve 
a set of stimulus-response rules featuring arbitrary com-
plexity without the need to a priory specify the extent of 

IF-THEN

Peer_d 20 

10 Peer_a 

< Turn 

+ 
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such complexity might imply an enormous computational 
effort caused by the need to discover a huge search space 
while looking for optimal solution to the problem. A 
well-known way to limit the search space, and conse-
quently, to reduce the computational effort of GP is to 
impose a restriction on the syntax of evolved genetic 
programs based on their a priory known, domain specific 
semantics. The approach is known as strongly typed ge-
netic programming (STGP) and its advantage over ca-
nonical GP in achieving better computational effort is 
well proven. Our objective is in XGP to realize a generic 
support of STGP.  

Considering the same sample rule as shown in Figure 
3, and multimodality of perception information, it is no-
ticeable that all nodes (i.e. both the functions and their 
operands) are associated with data types such as distance 
(Peer_d, 20), angle (Peer_a, 10), Boolean (Peer_d<20), 
etc. An eventual arbitrary creation or modification of 
such genetic program semantically would make little 
sense: e.g. it is unfeasible to maintain a rule with stimu-
lus-related part featuring  arithmetical expression in-
volving operands of different data types (e.g. distance, 
angle and Booleans) at least because physically they are 
of different dimensions. In addition, there is clear possi-
bility in maintaining introns if such an expression com-
pares perception variable with constant beyond the range 
of corresponding sensor (e.g. Peer_d>1000, in case that 
sensor range is 400). Analogically, the semantics of ac-
tion Turn() implies a parameter of corresponding data 
type - an angle. However data types are not explicitly 
specified in considered so far DOM/XML representation 
of genetic programs in XGP, and consequently, not evi-
dent for the routines that create and alter it. To address 
the issue, in XGP we explicitly introduced the notion of 
type (in a way similar to STGP) represented as XML-tag 
for all the entities the genetic programs are composed of. 
In addition, we established a set of rules (i.e. grammar) 
describing the allowed relationship between types in se-
mantically meaningful genetic program. Routines that 
create and alter genetic programs (e.g. creation of initial 
population and mutation) refer to the type of entity they 
are going to currently alter and impose the corresponding 
constraints to the sub-tree structures or values being gen-
erated. In crossover only nodes (with corresponding 
sub-trees) of the same type can be swapped.  

In XGP we represent the grammar of STGP as a XML 
schema [1][2], which is an official World Wide Web 
Consortium (W3C) recommended, standard way to 
define the relationship among the entities in 
XML-document (i.e. genetic program). Since the syntax 
of schema conforms to the XML-standard, the routines 
those create and alter the parsing tree of genetic program 
access the schema via API of DOM-parsers in a way, 
identical to the way of accessing DOM/XML-based 
representation of genetic program.  

We developed a set of formal rules for translating a 
BNF-defined grammar of STGP into corresponding 
XML-schema. Without touching the details of such rules, 
we present the resulting fragment of XML-schema 
(Figure 4) that corresponds to stimulus-related part of 
sample rule illustrated in Figure 3. Notice the definition 

of the sensory abilities – the morphology of the agent: the 
kind of perception information (Wall_d, Peer_d) and 
the range of corresponding sensor (0..400). In a similar 
way XML schema defines the response abilities (actions) 
of the agents. Considering the communication as 
response for the speaker and stimulus for listener, the 
XML-schema offers a generic way to define the 
communication abilities of the agent. The section of 
XML-representation of strongly typed genetic program 
created applying the same fragment of XML schema is 
shown in Figure 5.  

 
<xs:complexType name="IF-THEN"><xs:sequence>   
  <xs:element name="COND-THEN" type="COND-THEN" />  
  <xs:element name="THEN" type="THEN" />   
</xs:sequence></xs:complexType> 
<xs:complexType name="COND-THEN"> 
  <xs:choice> 
  <xs:element name="COND_TDist" type="COND_TDist" />  
  ... 
</xs:choice></xs:complexType> 
<xs:complexType name="COND_TDist"> 
  <xs:sequence> 
  <xs:element name="VAR_TDist" type="VAR_TDist" />  
  <xs:element name="OPER_TDist" type="OPER_TDist" />  
  <xs:element name="CONST_TDist" type="CONST_TDist" />  
</xs:sequence></xs:complexType> 
<xs:simpleType name="VAR_TDist"> 
  <xs:restriction base="xs:string"> 
  <xs:enumeration value="Wall_d" />  
  <xs:enumeration value="Peer_d" />  
</xs:restriction></xs:simpleType> 
<xs:simpleType name="OPER_TDist"> 
  <xs:restriction base="xs:string"> 
  <xs:enumeration value="GE" />  
  <xs:enumeration value="LE" />  
</xs:restriction></xs:simpleType> 
<xs:simpleType name="CONST_TDist"> 
  <xs:restriction base="xs:integer"> 
  <xs:minInclusive value="0" />  
  <xs:maxInclusive value="400" />  
</xs:restriction></xs:simpleType> 

Figure 4. XML schema of XGP, defining the grammar 
corresponding to the stimulus-related part of rule shown in 
Figure 1 and Figure 2.  

 
<GP> 
  <IF-THEN> 
    <COND-THEN> 
      <COND_TDist> 
        <VAR_TDist>Peer_d</VAR_TDist>  
        <OPER_TDist>LE</OPER_TDist>  
        <CONST_TDist>20</CONST_TDist>  
      </COND_TDist> 
    </COND-THEN> 
    <THEN> 
    ... 
    </THEN> 
  </IF-THEN> 
</GP> 

Figure 5. XML-representation of strongly typed genetic pro-
gram, created applying the fragment of XML schema shown in 
Figure 4. 

3 Verification 

In order to verify the feasibility of XGP and its de-
sign- and run-time implication we implemented a proto-
type of GP system for offline phylogenetic learning of 
agents in predator-prey pursuit problem. The problem 
comprises four predators (agents) whose goals are to 
capture a prey by surrounding it on all sides in a world 
(Figure 6) [3]. XGP runs on Windows OS system and 
employs Microsoft DOM parser – MSXML4.0. Consid-
ering the elaboration of the issues related to the emer-
gence of surrounding behavior as irrelevant to the aims 
of this document and focusing on the verification of pro-
posed approach as technology for representing genetic 
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programs, we would like to summarize the result as fol-
lows: 
• Developing the prototype of XGP is significantly alle-

viated by use of DOM-parser. We measured about few 
[men x days] of development efforts (without consid-
ering the development of user interface), and 

• XML schema in XGP offers generic way to impose the 
semantics constraints of genetic programs represented 
as DOM-parsing trees. The resulting computational 
effort for considered instance of predator-prey problem 
is relatively low and is in order of several thousands 
evaluations of genetic programs. 

 

 

 

 

 

 

 

Figure 6. Snapshot of XML, employed for evolution of predator 
agents in predator-prey MAS 
 
We observed similar design-, and run-rime implications 
of XGP, also applied for the evolution of snake-like robot 
(Figure 7)  [4], Sony’s Aibo quadruped robot (Figure 8), 
and computer-controlled scale car [5]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. XGP applied for evolution of locomotion gaits of 
simulated snake-like robot. 

4 Conclusion 

We presented the result of our work on the role of 
genetic representation in facilitating quick design of effi-
ciently running offline phylogenetic learning via GP. We 
proposed an XML-based genetic programming featuring 
a portable representation of evolvable agents (genetic 
programs) based on widely adopted DOM/XML standard. 

The manipulation of genetic programs implies the use of 
build-in API of off-the-shelf DOM-parsers. The approach 
features significant reduction of time consumption of 
usually slow process of software engineering of GP. In 
addition it offers a generic way to facilitate the reduction 
of computational effort via limitation of search space of 
GP by handling of only semantically correct genetic pro-
grams. Consistent with the concept of strongly typed GP, 
an approach of using W3C-recommended standard XML 
schema is developed as a generic way to represent and 
impose the grammar rules. The ideas laid in the founda-
tion of the proposed approach are verified on the imple-
mentation of genetic programming for evolving social 
behavior of agents in predator prey pursuit problem. Due 
to the domain neutrality of GP, the approach can be ap-
plied for quick developing of efficiently running GP in 
various problem domains. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. XGP applied for evolution of postures of the model of 
Sony’s Aibo quadruped robot. 
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