
XML-based Genetic Programming Framework:
Design Philosophy, Implementation and Applications

Ivan Tanev and Katsunori Shimohara

Department of Information Systems Design,

Faculty of Science and Engineering, Doshisha University,
1-3 Miyakodani, Tatara, Kyotanabe,Kyoto 610-0321, Japan

e-mail: {itanev, kshimoha}@mail.doshisha.ac.jp

Abstract
We present the design philosophy, the implementation
and various applications of XML-based genetic pro-
gramming (GP) framework (XGP). The key feature of
XGP is the distinct representation of genetic programs as
DOM-parse trees featuring corresponding flat XML-text.
XGP contributes to the achievement of (i) fast prototyp-
ing of GP by using the standard built-in API of
DOM-parsers for manipulating the genetic programs, (ii)
human-readability and modifiability of the genetic rep-
resentations (iii) generic support for the representation of
grammar of strongly-typed GP using W3C-standardized
XML-schema; and (iv) inherent inter-machine migrat-
ability of the text-based genetic representation (i.e., the
XML text) in the distributed implementations of GP.

Keywords: genetic programming, strongly-typed genetic
programming, genetic representation, XML, DOM.

1 Motivation

Developing controllers of mobile autonomous robots
is often performed as a sequence of simulated off-line
design (phylogenetic learning) of the robot’s software
model followed by on-line adaptation (ontogenetic
learning) on the physical robot situated in real environ-
ment. Justification to incorporate off-line software simu-
lation into the process of robots controller design comes
from the facts that verification of robot behavior on
physical robots is extremely time consuming and often
dangerous for the robot and surrounding environment.
These arguments in favor of software simulation of con-
troller as a process, which precedes the physical design
and online learning on real robot become even more
relevant within the context of recently emerged trends in
robotics such as investigating the social behavior, the role
and value of communication in emergent coherence, co-
operation and collaboration in the robots’ societies situ-
ated in inherently competitive or cooperative environ-
ments. Simulating robot controllers as software agents
and focusing on the model of their relevant features is
viewed as a promising way to address the above men-
tioned shortcomings of direct verification of behavior on
physical robots.

GP, which we propose as an approach for offline
learning implies that the agent’s code is automatically
designed by computer system via simulated evolution
employing selection and survival of the fittest in a way

similar to the evolution of species in the nature. While
for many tasks handcrafting the agent code can be seen
as natural approach, it might be unfeasible for most of
real-world problems due to their typically enormous
complexity. Moreover, in many problems the challenge is
to develop a solution, which is competitive or even better
than human-designed one. Such a solution might be well
beyond the abilities of human to handcraft it.

The software model of the evolvable robot’s control-
ler should fulfill the basic requirements of being adequate,
fast running, and quickly developed. Considering the
adequacy of the model as beyond the scope of this
document, we intend to highlight the issues related to the
efficiency of the system (in terms of reduced developing-
and execution time) for evolving agent’s behavior. The
typically slow developing time of GP stems from the
highly specific semantics of main attributes of GP (rep-
resentation, initial population, genetic operations and
fitness evaluation) and the lack of generic support to
these attributes in 3G algorithmic languages and corre-
sponding software engineering standards. Developing
time of GP can be significantly reduced incorporating
commodity-off-the-shelf software components and stan-
dards in software engineering of GP. The runtime of GP
can be reduced as a cumulative result of reduced compu-
tational effort (the amount of individuals that should be
processed in order to obtain a solution with specified
probability) and increased computational performance
(the amount of individuals evaluated per unit of time).

The objective of our research is to develop a genetic
representation of the evolvable autonomous agents,
which based on commodity-off-the-shelf software com-
ponents and widely adopted industrial standards, would
facilitate the achievement of easy and quick development
phase of GP and would contribute to the achievement of
better computational effort. The long-term aim is to em-
ploy such a representation in our research on the emer-
gence and the survival value of social behavior and
communication in multi-agent systems.

The remaining of the document is organized as fol-
lows. Section 2 introduces GP as algorithmic paradigm
for offline learning of behavior of predator agents in
predator-prey multi-agent systems (MAS). It also elabo-
rates the proposed approach of representing evolvable
agents (genetic programs) as DOM-parsing trees and
discusses its design-time and runtime-related implica-
tions. Section 3 presents the result of verification of our
approach on predator-prey pursuit problem. Conclusion
is drawn in Section 4.

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 21

2 Approach
2.1 Algorithmic Paradigm

We consider a set of stimulus-response rules as a
natural way to model the reactive behavior of autono-
mous agents which in general can be evolved using artifi-
cial neural networks, genetic algorithms, and GP. GP is
a domain-independent problem solving approach in
which a population of computer programs (individuals) is
evolved to solve problems [2]. The simulated evolution
in GP is based on the Darwinian principle of reproduc-
tion and survival of the fittest. In GP individuals are rep-
resented as parsing trees whose nodes are functions, vari-
ables or constants. The nodes that have sub-trees are
non-terminals - they represent functions where the
sub-trees represent the arguments to function of that node.
Variables and constants are terminals – they take no ar-
guments and they always are leaves in the parsing tree.
The set of terminals for evolving agent’s behavior in
predator-prey MAS [3] includes the relevant stimuli such
as perceptions (e.g. distance and visible angle to various
objects in the world), its own state, etc.; and the response
(actions) which the agent is able to perform. The most
relevant functions (non-terminals) are the arithmetical
and logical operators (>, <, =, +, - , etc.), and the IF-THEN
function, establishing the relationship between certain
stimulus and corresponding response. A sample stimu-
lus-response rule is shown in Figure 1. It expresses a
reactive behavior of turning to the bearing (angle) of the
peer agent (Peer_a) plus 10 (degrees) as a result of
stimulus of distance to that agent (Peer_d) being less
than 20 (mm). A parsing tree of rule, depicted in Figure 1
is shown in Figure 2.

 IF (Peer_d<20) THEN Turn(Peer_a+10)

Figure 1. Sample stimulus-response rule governing the agent
behavior.

Figure 2. Sample stimulus-response rule represented as a pars-
ing tree in GP.

Parsing-tree representation and its flat equivalents

(LISP S-expression, postfix or prefix notations) are typi-
cally maintained and manipulated by GP-systems in a
customized way. Therefore, an eventual tailoring of the
available general purpose GP-systems for the task of
evolving autonomous agents would be a time consuming
approach. Design of GP-system from scratch would be
(if not the only feasible) at least faster and more flexible
way, providing that the implementation of main attributes
of GP is based on widely adopted industrial standards
and off-the-shelf technologies.

2.2 Genetic Representation

Inspired by flexibility and recently emerged wide-
spread adoption of document object model (DOM) and

extensible markup language (XML), we propose an ap-
proach of representing genetic program as a
DOM-parsing tree featuring corresponding flat XML text.
Our additional inspiration comes from the fact that de-
spite of the reported use of DOM/XML for representing
computer architectures, source codes, and agents’ com-
munication languages we are not aware about any at-
tempts to employ this technology for representing ev-
olvable structures such as genetic programs in generic,
standard, and portable way. Our approach implies per-
forming genetic operations on DOM-parsing tree using
off-the shelf, platform- and language neutral
DOM-parsers, and using XML-text representation as a
format, feasible for migration among the computational
nodes in eventual distributed GP.

The DOM-parsing tree of the sample rule considered
earlier (Figure 1) looks in exactly the same way as pars-
ing tree in canonical representation of genetic programs
(Figure 2). However the flat representation of the rule is
XML (Figure 3), rather than LISP S-expression.

<GP>
 <IF-THEN>
 <LE>
 <PERC>Peer_d</PERC>
 <PERC>20</PERC>
 </LE>
 <TURN>
 <PLUS>
 <PERC>Peer_a</PERC>
 <PERC>10</PERC>
 </PLUS>
 </TURN>
 </IF-THEN>
</GP>

Figure 3. XML representation of stimulus-response rule in GP.

2.3 Design-time Implications
In contrast to the typical approaches to manipulate

parsing trees using custom code and representations, the
proposed XML-based genetic programming (XGP) offers
benefits of requiring minimum programming efforts and
allowing developers to use the software platform, devel-
oping language, and/or programming paradigm which
better fits the aims of concrete implementation of GP.
These benefits are result of:
• Use of API of DOM-parsers: parsing tree of genetic

program is manipulated using built-in API of
DOM-parsers,

• Platform neutrality of parsers: DOM-parsers are avail-
able for virtually any of widely used software plat-
forms (e.g., as Java classes), facilitating the portability
of GP across different software platforms,

• Language neutrality of parsers: DOM-parsers are also
available as language-neutral components (e.g. Micro-
soft COM), offering the same programming model of
parsing trees regardless of the language employed to
develop the code of GP that manipulates them, and

• Paradigm neutrality of parsers: DOM-parsers are
available for programming paradigms, such as data-
base stored procedures, web-client and web-server-side
scripts, etc.

2.4 Run-time Implications

The potential strength of GP to automatically evolve
a set of stimulus-response rules featuring arbitrary com-
plexity without the need to a priory specify the extent of

IF-THEN

Peer_d 20

10 Peer_a

< Turn

+

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 22

such complexity might imply an enormous computational
effort caused by the need to discover a huge search space
while looking for optimal solution to the problem. A
well-known way to limit the search space, and conse-
quently, to reduce the computational effort of GP is to
impose a restriction on the syntax of evolved genetic
programs based on their a priory known, domain specific
semantics. The approach is known as strongly typed ge-
netic programming (STGP) and its advantage over ca-
nonical GP in achieving better computational effort is
well proven. Our objective is in XGP to realize a generic
support of STGP.

Considering the same sample rule as shown in Figure
3, and multimodality of perception information, it is no-
ticeable that all nodes (i.e. both the functions and their
operands) are associated with data types such as distance
(Peer_d, 20), angle (Peer_a, 10), Boolean (Peer_d<20),
etc. An eventual arbitrary creation or modification of
such genetic program semantically would make little
sense: e.g. it is unfeasible to maintain a rule with stimu-
lus-related part featuring arithmetical expression in-
volving operands of different data types (e.g. distance,
angle and Booleans) at least because physically they are
of different dimensions. In addition, there is clear possi-
bility in maintaining introns if such an expression com-
pares perception variable with constant beyond the range
of corresponding sensor (e.g. Peer_d>1000, in case that
sensor range is 400). Analogically, the semantics of ac-
tion Turn() implies a parameter of corresponding data
type - an angle. However data types are not explicitly
specified in considered so far DOM/XML representation
of genetic programs in XGP, and consequently, not evi-
dent for the routines that create and alter it. To address
the issue, in XGP we explicitly introduced the notion of
type (in a way similar to STGP) represented as XML-tag
for all the entities the genetic programs are composed of.
In addition, we established a set of rules (i.e. grammar)
describing the allowed relationship between types in se-
mantically meaningful genetic program. Routines that
create and alter genetic programs (e.g. creation of initial
population and mutation) refer to the type of entity they
are going to currently alter and impose the corresponding
constraints to the sub-tree structures or values being gen-
erated. In crossover only nodes (with corresponding
sub-trees) of the same type can be swapped.

In XGP we represent the grammar of STGP as a XML
schema [1][2], which is an official World Wide Web
Consortium (W3C) recommended, standard way to
define the relationship among the entities in
XML-document (i.e. genetic program). Since the syntax
of schema conforms to the XML-standard, the routines
those create and alter the parsing tree of genetic program
access the schema via API of DOM-parsers in a way,
identical to the way of accessing DOM/XML-based
representation of genetic program.

We developed a set of formal rules for translating a
BNF-defined grammar of STGP into corresponding
XML-schema. Without touching the details of such rules,
we present the resulting fragment of XML-schema
(Figure 4) that corresponds to stimulus-related part of
sample rule illustrated in Figure 3. Notice the definition

of the sensory abilities – the morphology of the agent: the
kind of perception information (Wall_d, Peer_d) and
the range of corresponding sensor (0..400). In a similar
way XML schema defines the response abilities (actions)
of the agents. Considering the communication as
response for the speaker and stimulus for listener, the
XML-schema offers a generic way to define the
communication abilities of the agent. The section of
XML-representation of strongly typed genetic program
created applying the same fragment of XML schema is
shown in Figure 5.

<xs:complexType name="IF-THEN"><xs:sequence>
 <xs:element name="COND-THEN" type="COND-THEN" />
 <xs:element name="THEN" type="THEN" />
</xs:sequence></xs:complexType>
<xs:complexType name="COND-THEN">
 <xs:choice>
 <xs:element name="COND_TDist" type="COND_TDist" />
 ...
</xs:choice></xs:complexType>
<xs:complexType name="COND_TDist">
 <xs:sequence>
 <xs:element name="VAR_TDist" type="VAR_TDist" />
 <xs:element name="OPER_TDist" type="OPER_TDist" />
 <xs:element name="CONST_TDist" type="CONST_TDist" />
</xs:sequence></xs:complexType>
<xs:simpleType name="VAR_TDist">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Wall_d" />
 <xs:enumeration value="Peer_d" />
</xs:restriction></xs:simpleType>
<xs:simpleType name="OPER_TDist">
 <xs:restriction base="xs:string">
 <xs:enumeration value="GE" />
 <xs:enumeration value="LE" />
</xs:restriction></xs:simpleType>
<xs:simpleType name="CONST_TDist">
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0" />
 <xs:maxInclusive value="400" />
</xs:restriction></xs:simpleType>

Figure 4. XML schema of XGP, defining the grammar
corresponding to the stimulus-related part of rule shown in
Figure 1 and Figure 2.

<GP>
 <IF-THEN>
 <COND-THEN>
 <COND_TDist>
 <VAR_TDist>Peer_d</VAR_TDist>
 <OPER_TDist>LE</OPER_TDist>
 <CONST_TDist>20</CONST_TDist>
 </COND_TDist>
 </COND-THEN>
 <THEN>
 ...
 </THEN>
 </IF-THEN>
</GP>

Figure 5. XML-representation of strongly typed genetic pro-
gram, created applying the fragment of XML schema shown in
Figure 4.

3 Verification

In order to verify the feasibility of XGP and its de-
sign- and run-time implication we implemented a proto-
type of GP system for offline phylogenetic learning of
agents in predator-prey pursuit problem. The problem
comprises four predators (agents) whose goals are to
capture a prey by surrounding it on all sides in a world
(Figure 6) [3]. XGP runs on Windows OS system and
employs Microsoft DOM parser – MSXML4.0. Consid-
ering the elaboration of the issues related to the emer-
gence of surrounding behavior as irrelevant to the aims
of this document and focusing on the verification of pro-
posed approach as technology for representing genetic

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 23

programs, we would like to summarize the result as fol-
lows:
• Developing the prototype of XGP is significantly alle-

viated by use of DOM-parser. We measured about few
[men x days] of development efforts (without consid-
ering the development of user interface), and

• XML schema in XGP offers generic way to impose the
semantics constraints of genetic programs represented
as DOM-parsing trees. The resulting computational
effort for considered instance of predator-prey problem
is relatively low and is in order of several thousands
evaluations of genetic programs.

Figure 6. Snapshot of XML, employed for evolution of predator
agents in predator-prey MAS

We observed similar design-, and run-rime implications
of XGP, also applied for the evolution of snake-like robot
(Figure 7) [4], Sony’s Aibo quadruped robot (Figure 8),
and computer-controlled scale car [5].

Figure 7. XGP applied for evolution of locomotion gaits of
simulated snake-like robot.

4 Conclusion

We presented the result of our work on the role of
genetic representation in facilitating quick design of effi-
ciently running offline phylogenetic learning via GP. We
proposed an XML-based genetic programming featuring
a portable representation of evolvable agents (genetic
programs) based on widely adopted DOM/XML standard.

The manipulation of genetic programs implies the use of
build-in API of off-the-shelf DOM-parsers. The approach
features significant reduction of time consumption of
usually slow process of software engineering of GP. In
addition it offers a generic way to facilitate the reduction
of computational effort via limitation of search space of
GP by handling of only semantically correct genetic pro-
grams. Consistent with the concept of strongly typed GP,
an approach of using W3C-recommended standard XML
schema is developed as a generic way to represent and
impose the grammar rules. The ideas laid in the founda-
tion of the proposed approach are verified on the imple-
mentation of genetic programming for evolving social
behavior of agents in predator prey pursuit problem. Due
to the domain neutrality of GP, the approach can be ap-
plied for quick developing of efficiently running GP in
various problem domains.

Figure 8. XGP applied for evolution of postures of the model of
Sony’s Aibo quadruped robot.

References

[1] D.Beech, M.Maloney, N.Mendelsohn, H. Thompson,
XML Schema Part 1: Structures. W3C Recommen-
dation, 2001. http://www.w3.org/TR/2001/
REC-xmlschema-1-20010502/

[2] J.R.Koza, Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection,
Cambridge, MA: MIT Press, 1992.

[3] I. Tanev, M. Brzozowski, and K. Shimohara, Evo-
lution, Generality and Robustness of Emerged Social
Behavior in Continuous Predators-prey Pursuit
Problem, Genetic Programming and Evolvable Ma-
chines, Vol.6, Number 3, 2005, 301-318

[4] I. Tanev, T. Ray, and K. Shimohara, Exploring the
Analogy in the Emergent Properties of Locomotion
Gaits of Snakebot Adapted to Challenging Terrain
and Partial Damage, Journal of ISCI, Vol.19, No.6,
2006, 220-232

[5] I. Tanev, and K. Shimohara, Evolution of Agent,
Remotely Operating a Scale Model of a Car through
a Latent Video Feedback, Journal of Intelligent Ro-
botic Systems, No.52, Springer, 2008, 263-283

The Fifteenth International Symposium on Artificial Life and Robotics 2010 (AROB 15th ’10),
B-Con Plaza, Beppu,Oita, Japan, February 4-6, 2010

©ISAROB 2010 24

