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Abstract: In our previous work, we implemented an in vitro Boolean matrix multiplication with DNA computing.  Ho
wever, with the increase in the problem size, we realize the material consumption and experimental work required to co
mpute the problem with DNA increases drastically.  Thus in this paper, we modify our previous algorithm to reduce th
e material consumption and the labour intensiveness of the computation. 
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I. INTRODUCTION 

Using DNA for computation has gathered interest in 
many fields of application due to its massive parallel 
processing capability.  With high density and low 
energy dispersion, DNA can compute up to 1014 
maximum operation per second in a single test tube [1].  
Such characteristics of DNA computing made it an 
alternative for solving NP hard problems which require 
brute force in traditional computing.  However, several 
drawbacks of DNA computing became obvious after its 
implementation in laboratory works – one of which is 
the exponential growth of DNA volume required to 
solve a problem according to its problem size.  

In our previous work, we represented the matrix 
multiplication problem as a directed graph problem and 
synthesize DNA oligonucleotides to represent the 
vertices and edges in the graph.  However, it shows 
that for a larger N×N Boolean matrix multiplication 
with DNA, the volume of the DNA increases and the 
number of experimental work becomes tedious and 
impractical to be considered as a viable technology [2,3].  
Thus, in this paper we propose a strategy to reduce the 
experimental protocols and the material consumption 
for solving a larger set of Boolean matrix multiplication 
with DNA computing by using a fixed primer to 
represent the whole set of row indicators for the product 
matrix. 

 

II. BOOLEAN MATRIX MULTIPLICATION 

Boolean matrix multiplication is a fundamental 
operation that is used in many scientific areas of 

research such as linear algebra, signal processing, 
digital control and graph theory.   

Consider a binary matrix Y with dimension m x n.  
Matrix Y=A·B can be represented as a product of two 
matrices A and B with dimensions m x k and k x n 
respectively.  Two Boolean matrices and its product 
can further be represented by a graph problem [Kim].  
The row indicators for the first matrix A and the product 
matrix Y are represented as initial vertices; the column 
indicators for the second matrix B and the product 
matrix Y are represented as terminal vertices; and the 
column indicators for the first matrix A and the row 
indicators for the second matrix B are represented as 
intermediate vertices.  For all elements of value 1 in 
the matrices A and B, a directed edge is drawn for the 
corresponding initial vertex-intermediate vertex or 
intermediate vertex-terminal vertex intersections.  
Elements of value 1 in the product matrix Y is 
determined by the existence of a “path” which is a 
continuous linkage of directed edges from an initial 
vertex to a terminal vertex. 

   

III. COMPUTING BOOLEAN MATRICES 
WITH DNA 

In our previous work, we implemented a Boolean 
matrix multiplication problem with DNA computing. 
Let two Boolean matrices A and B and its multiplication 
product Y, be represented by a graph problem G.  We 
implemented the matrix multiplication problem with a 5 
step algorithm:  

(Step1) Sequence designs for V and E in G. 
(Step2) Generate an initial pool.  
(Step3) Determine Primers for Filtering.  
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(Step 4) Remove unwanted strands/Mass Copying.  
(Step 5) Identify strands. 
 
Basic bio-molecular tools used for the computation 

are briefly discussed as follows: 
Parallel Overlap Assembly (POA) is used to generate an 
initial pool containing all possible solutions to the 
problem.  Polymerase Chain Reaction (PCR) is a 
technique which uses a pair of DNA sequences known 
as “primers” to signal the start point and end point for a 
specific DNA sequence for mass amplification.  Gel 
electrophoresis is used to identify the results. 

We generate randomly unique single stranded DNA 
sequences to represent all vertices in graph G. The DNA 
sequences for directed edges are designed to be 
connector strands from an initial vertex to an 
intermediate vertex or from an intermediate vertex to a 
terminal vertex. The primers for filtering are determined 
from the row and column indicators for the product 
matrix Y to amplify only “path” strands during the mass 
copying.  The elements in the product matrix are 
represented by test tubes containing primer 
combinations for each row and column.  The value of 
the elements in the product matrix is identified from the 
constructed solution “paths” viewed in the gel 
electrophoresis process which yield highlighted bands 
for amplified “path” strands.   

Computation of Boolean matrix multiplication with 
DNA normally requires an m + n number of primers to 
be used as row and column indicators in the product 
matrix; and an m x n number of test tubes to represent 
all the elements in the product matrix.  Thus, for a 10 
×10 product matrix, a total of 20 primers are used to 
represent the row and column indicators; and a 100 test 
tubes are needed to represent all elements in the product 
matrix.  
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Fig. 1 Two 10 x 10 matrices and its product 

 

IV. FIXED COLUMN PRIMER 

We consider a matrix problem in Figure 1.  The 
main concept of a fixed column primer is to represent 
the whole set of row indicators with a fixed starting 
strand sequence.  Instead of 10 different primer 
sequences as row indicators, the whole column for 
initial vertices is represented by one common primer 
sequence (m = 1).  The individual rows are 
distinguished from each other by manipulating the 
different lengths for each initial vertex, to allow each 
element in the product matrix arrive at different path 
lengths, respective to only the corresponding row. 
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Fig. 2 Fixed Column Primer for Initial Vertices 

 
Figure 2 shows all strands for the initial vertices 

sharing a common 10-mer fixed column primer 
sequence A.  Each row indicator is then varied in their 
lengths to retain their separate row distinctiveness.  
With a fixed column primer, only an m + n primer and n 
test tubes are necessary to compute the Boolean matrix 
multiplication.  In this case, primers required for row 
indicators in Figure 2 is an m = 1 and for column 
indicators is n = 10.  This drastically reduces the total 
number of primers to m + n = 11.  Since the fixed 
column primer is shared by the row indicators and the 
detection of path is dependent on the number of primer 
combinations, elements in the product matrix can be 
verified with only 1 x n test tubes.  Hence, a total of 
only 10 test tubes are sufficient.  This drastically 
reduces the experimental steps needed to identify the 
elements in the product matrix. 

 The elements in the product matrix are verified by 
DNA sequence lengths in each column.  An element in 
a product matrix is defined by its total length: 

 
Total Length  = 
     (path) 

 
+ 
+ 
+ 

fixed column primer 
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V. DESIGN AND SYNTHESIS 

We implemented a (3x3) x (3x3) Boolean matrix 
multiplication as in Figure 3 with a fixed column primer.   
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Fig. 3 (3x3) x (3x3) Boolean Matrix Multiplication 

 
A 10-mer DNA sequence “tccccgttcc” is 

embedded in all three initial vertex sequences A10, A20, 
A30.  Additional unique sequences are constructed to 
distinguish the vertices with varied lengths of 20-mer, 
30-mer and 40-mer respectively.  Intermediate vertices 
and terminal vertices are set at 20-mer each.   

 
A-10 TCCCCGTTCC tattcgccta (20 mer)
A-20 TCCCCGTTCC acctcggttaaggaagtacg (30 mer)
A-30 TCCCCGTTCC ccctcttttaagcaagtaatgtactatgcg (40 mer)  

 
Fig. 4 Fixed column primer sequences for Initial 

Vertices 
 
The DNA sequences for all vertices are shown in 

Table I and the DNA sequences for the edges are shown 
in Table II. 

TABLE I 
DNA SEQUENCES FOR VERTICES WITH FIXED COLUMN 

Vertex DNA Sequence (5' – 3') Length 
(mer) 

A10 tccccgttcctattcgccta 20 
A20 tccccgttccacctcggttaaggaagtacg 30 
A30 tccccgttccccctcttttaagcaagtaatgtactatgcg 40 

a tcaagcatcgggtcgcaact 20 
b cctatccacggcttggggtc 20 

B1 ccaacgagggtgtattccgc 20 
B2 ctcagtgccgaaccttgcct 20 
B3 aggacatacagaggcgggca 20 

 

TABLE II 
DNA SEQUENCES FOR DIRECTED EDGES 

Edges DNA Sequence (5' – 3') Length (mer) 
A10a cgatgcttgataggcgaata 20 
A20b cgtggataggcgtacttcct 20 
A30a cgatgcttgacgcatagtac 20 
aB1 ccctcgttggagttgcgacc 20 
bB2 cggcactgaggaccccaagc 20 
bB3 tgtatgtcctgaccccaagc 20 

VI. EXPERIMENT 

All synthesized DNA sequences for vertices and 
edges are poured together into a single T0.  Parallel 
Overlap Assembly method is used to generate an initial 
pool containing all possible solution to the problem.  
The initial pool generation is performed in a solution 
containing 67.5µl ddH20 (Maxim Biotech), 1µl for 
every DNA strand (oligo) (Proligo Primers & Probes), 
10µl of dNTP (TOYOBO, Japan), 10µl KOD dash 
buffer (TOYOBO, Japan) and 0.5µl KOD dash 
(TOYOBO, Japan).  The solution is run for 25 cycles 
with the first stage of 90ºC for 30 seconds, second stage 
of 55ºC for 30 seconds and third stage of 74ºC for 10 
seconds per cycle.  At the end of the POA cycles, the 
strands for “paths” are formed.   

PCR is conducted for all test tubes in Table III, each 
containing 13.875µl ddH20 (Maxim Biotech), 1µl of 
template DNA from POA process, 2.5µl of dNTP 
(TOYOBO, Japan), 2.5µl KOD dash buffer (TOYOBO, 
Japan) and 0.125µl KOD dash (TOYOBO, Japan) and 
2.5 µl of each primer combination.  The solutions are 
spun for 13000 rpm in 25 ºC for 5 minutes before 
running them for 25 cycles with the first stage of 90ºC 
for 30 seconds, second stage of 55ºC for 30 seconds and 
third stage of 74ºC for 10 seconds per cycle. 

 

VII. RESULTS AND DISCUSSIONS 

The experimental results are shown in Figure 4.   
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Paths: 
 
A10 → b → X = 60 b.p. 
(20)   (20)   (20) 
 

A20 → a → Y = 70 b.p. 
(30)   (20)   (20) 
 

A20 → a → Z = 70 b.p. 
(30)   (20)   (20) 
 

A30 → c → X = 80 b.p. 
(40)   (20)   (20) 
  

Fig. 4 Results from Gel Electrophoresis 
 

The lanes for each test tube representing the columns 
X, Y and Z show the read-outputs for the Boolean 
matrix computation. From the results, lanes for column 
Y and Z yield 70 b.p. highlighted bands which are 
consistent with our predicted outcomes.  However, the 
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lane for column X is devoid of such highlighted band.  
We conduct a second PCR to confirm whether the 
predicted 60 b.p. and 80 b.p. length paths exist for the 
column X and the results are successful.  Both lanes 
for X-60 and X-80 yield highlighted bands.   

The primer A has no problem identifying and 
amplifying all strands with the defined starting 
sequences.  However, the non-existence of highlighted 
bands for 60 b.p and 80 b.p in lane X when the paths of 
60 b.p and 80 b.p actually exist indicates a problem in 
Step 4.  While the mass amplification works 
successfully for identification of one type of path strand 
in a tube (Y and Z), it was less successful in amplifying 
more than one path in a tube (X).   

Another problem with using the fixed column primer 
algorithm is the restriction of length for initial vertex 
sequence strands.  While in theory, the length of the 
initial vertex sequence is varied to retain the rows 
distinctiveness, in actual there is a practical limit to the 
length of vertex sequence for effective construction of 
path.  Generated DNA sequence strands longer than 80 
b.p immediately increase in its melting temperature with 
some strands having ≥ 100°C.  This will cause a 
problem in the processes employed to implement Step2 
and Step4 which have three temperature stages.  Vast 
differences in melting temperatures between the shorter 
and longer strands will cause the strands with higher 
melting temperature to not anneal when the shorter 
strands with lower melting temperature do.  Similarly, 
the shorter strands with lower melting temperature will 
not denature when the longer strands do which leads to 
mishybridizations and incomplete paths. 

Proper design of oligonucleotides is important for a 
successful implementation in DNA computing.  
Hybridizations between DNA molecules work as an 
information carrier that executes the computation.  
Therefore, mishybridizations such as based mismatches, 
shifted hybridizations, and hairpin formations can lead 
to fatal errors during the implementation steps.  While 
both careful encoding and external reaction conditions 
such as salt and temperature can be adjusted to 
minimize errors, some mishybridizations are due to 
occur as the implementation of DNA computing is a 
wet-lab process than is unstable.  Therefore, realistic 
precautions and problem anticipation must be taken into 
account while designing the sequences for computation. 

VIII. CONCLUSIONS 

We proposed a fixed column primer to reduce the 
material consumption and experimental works for 
computing Boolean matrix multiplication with DNA 
computing.  The results successfully yield predicted 
outcomes of constructed path but the extraction process 
is less effective. 
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