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Abstract: “Embodied evolution (EE)” is a methodology in evolutionary robotics, in which, without simulations
on a host computer, real robots evolve on the basis of the interactions with actual environment. However, we
had to accept robot behavior with low fitness especially in the early generations when adopting EE. This paper
introduced pre-evaluation into the EE framework for a biped robot in order to restrain robot behavior of which
fitness is estimated to be low, especially, falling down to the ground. We provide a comparative discussion on the
conventional simulate-and-transfer method, the original EE method and the proposed one in terms of calculation
time, cost of fitness evaluation and cost of simulation or modeling based on the evaluation experiments. We
believe that the EE framework with pre-evaluation is applicable to a wide variety of optimization tasks in which

the cost or risk of fitness evaluation is not negligible.
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1 Introduction
Evolutionary robotics is a challenging technique for
creation of autonomous robots based on the Dar-
winian principle of natural selection [1]. In the con-
ventional evolutionary robotics, the “simulate-and-
transfer” method has been adopted, in which a con-
troller is developed using an evolutionary algorithm
on a host computer and then the solution is trans-
ferred to a physical robot. However, some issues
are increasingly problematic for the method: perfor-
mance of evolved behavior tends to be less than ex-
pected owing to the gap between simulation and the
real world. Also, it is necessary to model the envi-
ronment every time when a new task is given.
Pollack et al. proposed “embodied evolution (EE)”
for solving these issues, in which real robots evolve
based on the interactions with actual environment
without simulation on a host computer [2]. Usui
and Arita extended the framework by providing each
robot with an evolving population of virtual individ-
uals in order to reduce the dependence of the number
of the robots and of the frequency of encounter with
other robots on the speed of evolution [3]. However,
these studies brought in new issues. We have to ac-
cept robot behavior with low fitness especially in the
early generations. Also, evaluation based on robot
behavior needs longer convergence time in general.
This paper introduces pre-evaluation into the EE
framework so as to restrain robot behavior whose fit-
ness is estimated to be low and evaluates the proposed
architecture that is applied to a humanoid robot. The
mechanism for pre-evaluation is introduced as a co-
evolutionary system in the proposed architecture. In
other words, both the robot behavior and evaluation
of the robot behavior evolve while interacting with
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each other. We expect introduction of pre-evaluation
to decrease the number of falls in the early stage of
evolution of biped-walking.

2 Framework

Fig. 1 shows the framework for Embodied Evolu-
tion with pre-evaluation. A set of information spec-
ifying the robot controller (Controller Genome, CG)
and its fitness value evaluated by robot behavior (Fr)
or estimated by pre-evaluation (Fp) are coupled and
stored as an individual in the Controller Pool (CP).
A new individual is generated by selecting (copying)
two CGs from the CP based on the roulette wheel
selection, and then uniform crossover and mutation
are operated. The new CG is then coupled with an
Environment Genome (EG) on which genetic opera-
tors have also been performed similarly and put into
the genome queue. Pre-evaluation of a CG is done
using its coupled EG before the robotic evaluation
in the real world. In case the pre-evaluation value is
less than a threshold described below, it skips robotic
evaluation and returns to the CP coupled with the
pre-evaluation value. Otherwise, robotic evaluation
is conducted and returns to the CP coupled with the
fitness value. This study does not consider transmis-
sion of individuals among robots, although migrations
of CGs among robots are allowed in the framework.

EG, which is a set of information specifying the en-
vironment in pre-evaluation, is also coupled with its
fitness value and stored into the Environment Pool
(EP). The fitness of an EP is the agreement rate be-
tween the fitness value by robotic behavior and the
estimated value by pre-evaluation. The design of the
evolutionary system for pre-evaluation depends on
the requirements of users. If knowledge about the



robot and the task are not built-in at all, then the
evolutionary system corresponds to genetic program-
ming that constructs a function of a EG specifying
the fitness value of it. On the other hand, if most
possible information is built-in, then it corresponds
to a kind of parameter tuning. There are important
trade-offs here, which will be investigated thoroughly
in later sections.
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(a) The proposed architecture.

(1) Selection of a pair of CG and EG based on Fr, Fp, Fe
(2) Uniform crossover and mutation on the pair

(3) Pre-evaluation of the CG using EG (Fp is obtained)
(4) If Fp is less than T then go to (8)

(5) Robotic evaluation of CG (Fr is obtained)

(6) CG accompanied with Fr returns to CP

(7) Computation of Fe from Fp and Fr

(8) EG accompanied with Fe returns to EP

(9) Go to (1)

(b) The loop of the architecture.

CG: Controller Genome

EG: Environment Genome

CP: Controller Pool

EP: Environment Pool

Fr: Fitness of the CG based on robotic evaluation

Fp: Fitness of the CG based on pre-evaluation

Fe: The fitness of EP (Agreement rate between Fr and Fp)
T: Threshold value for bypassing the robotic evaluation

Figure 1: A framework for embodied evolution with
pre-evaluation.

3 Implementation

We compared the original EE method with the one
with pre-evaluation. We adopted two methods for
pre-evaluation: A pre-defined function with param-
eters is optimized (PE1) and a neural network is
optimized (PE2) both by evolution. The latter has
a larger search space of pre-evaluation. We used
a humanoid robot with two four-degree-of-freedom
arms and two six-degree-of-freedom legs (HRP-2m
Choromet), and biped walking was evolved. Walk-
ing distance was measured by using built-in power
sensors and used as a fitness value.

Fig. 2 shows walking pattern for the biped robot.
N was the walk count constituting one trial (walking
pattern). The trajectory of legs was generated by
a cosine function. a(0 < a < 0.05)[m] represents
the length of the movement of the center of gravity
by inclining the legs to the left or right, ¢(0 < ¢ <
0.05)[m] represents the length of the movement of the
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Figure 2: The following sequence constitutes a trial
(N = 4): 1) Both legs are parallel with half-sitting

(state 0), 2) Move center of gravity to the left by in-
clining the legs, 3) Move right leg to the front (action
1), 4) Move center of gravity to the right-front by
inclining the legs (action 2), 5) Move left leg to the
front, 6) Move center of gravity to the left-front by
inclining the legs, 7) (action 1), 8) (action 2), 9) Move
left leg to the front , 10) (state 0).

center of gravity by moving the legs to the front, and
d(0 < d < 0.02)[m] represents the height to which
legs are raised. Each CG is composed of these three
parameters.

F,. was calculated as follows: F, = CZ?; Z;,
where Z; was the value output from the built-in power
sensors.

When adopting PE1, the pre-evaluation value was
calculated as follows:

F, = crPmpaph (1)

P, = —d(a—a)*+1 (2)
r_ 1/“% (ag > amaz/2)

@ o { 1/(amaz - a2)2 (a2 < amax/Z) (3)

P. = —d(c—ec)?+1 (4)
r_ 1/‘3% (c2 > cmax/2)

¢ o { 1/(Cmaz - 62)2 (C2 < Cmaz/Q) (5)

Py = —d/(d — d2)2 +1 (6)
1/d3 (d2 > dmaz/2)

' (7)

o { 1/(dmax - d2)2
in which a1, a9, ¢1, ¢, d1, da, and r were the genes in
EG with initial values of 3, 0.03, 3, 0.05, 3, 0.015, and
18000, respectively, and the upper limits of a, ¢ and d
are represented as Gmaz, Cmar aNd dpyqz, TESpectively.
This function represents a fitness landscape in which
when each value moves from the optimal value, the
function value decreases rapidly (which corresponds
to the increase in the number of falling down). The
mutation rate was set to 0.3.

When adopting PE2, the neural network for identi-
fying the fitness function that evaluates each EG was
defined as follows:

(d2 < dmaz/2)

3
Y = sig(z Tiwit3(—1) — 05) (8)
i=1
4
2= sig()_ yiwit12 — 65) (9)
i=1
() = —— (10)
S =TT exp(—x)
01 ~ 05 were the thresholds of the neurons. The

input of the neural network was x1 = a/amaz, T2 =
¢/Cmaz and 3 = d/dpaz, respectively and the output
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Figure 3: The index values of CG.

of it, pre-evaluation value, was F, = z x 103. EG
was composed of 21 weights of the neural network
(w1 ~ wig). The initial values were set at random in
the range of -1.0 to 1.0. This mutation rate was set

L
to 0.7 —0.4- &==L— which changed according to the
average value of the fitness of EG. P was the size of
CP and EP.

The fitness of each EG was defined as the agree-
ment rate between the real ev%;uation value and the
o, > Fy)
F(F<F)

T was the threshold calculated as the average
CG value times the average EG value: T

P
Qi ”)(Z’ T4 1 case the pre-evaluation value
was below the threshold CG skipped the evaluation
based on robot behavior and returned to CP. Some
kind of deterioration was introduced in such a way
that the fitness of individuals in both CP and EP de-
creases by w = 1% every when CG or EG returns to
their pool.

pre-evaluation value: F, =

4 Evaluation

We evaluated the proposed architecture applied to a
biped robot, in which one of the two methods was
adopted for pre-evaluation as described in the pre-
vious section: function optimization (PE1) or neu-
ral network optimization (PE2) both by coevolution.
We compared them with the original EE method.
In addition, we evaluated the simulate-and-transfer
method for comparison. The size of CP and EP was
10. The number of initial individuals was 10 in each
of CP and EP. The mutation rate was set to 0.3, and
N was set to 4. 6 ~ 05 were set to 0.

Fig. 3 shows the transition of fitness in CG, real
evaluation values, pre-evaluation values and the times
of pre-evaluations in the case of EE (a), PE1 (b), or
PE2 (c). Also, x-marks in the graph indicate the
real evaluations in which the robot fell down to the
ground, and in case of PE1 and PE2 each bar graph
indicates the number of the times the real evaluation
was bypassed according to the low pre-evaluation val-
ues.
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It is shown that the average fitness in PEIl in-
creased more rapidly in the early evaluations than
the one in the EE, while the one in the PE2 increased
less rapidly than the one in the EE. We observe the
same tendency with the transitions of the real eval-
uation value, although they fluctuated significantly.
The good performance of PE1 was attained by by-
passing the real evaluation of the individuals whose
pre-evaluation was low. However, in case of PE2, the
evolution of EG is harder than the one in case of PE1,
and therefore the speed of the evolution of CG was
reduced.

We see that the number of falls was significantly
decreased by introducing pre-evaluation in case of
PE1, especially in the early evaluations (approxi-
mately from 10 to 2 in the first 20 real evaluations).
This was attained also by pre-evaluation without real
evaluation, which happened 25 times during the first
20 real evaluations. In case of PE2, introduction of
pre-evaluation reduced the total number of falls, but
the effect was far less than in case of PE1.

The pre-evaluation values moved roughly in accor-
dance with the real evaluation values. This means
the coevolution had been successfully applied in the
architecture. However, they tended to be a bit larger
than the real evaluation values. This is due to the
unique property of the evolution of EG. There are
two kinds of selection pressure. The explicit one is
to increase the fitness, in other words, by definition,
to decrease the difference between the real evalua-
tion value and the pre-evaluation value. The implicit
pressure is to increase the pre-evaluation value be-
cause the EG does not return to the EP when the
pre-evaluation value is smaller than the threshold and
thus the EG bypasses the real evaluation (Fig. 1).

Fig. 4 shows the transitions of the average and
maximum fitness in EP and the fitness of EG in case
of PE1 (a) and PE2 (b). Their values were relatively
large even in the early stages and fluctuated signifi-
cantly even in later stages. This is because the fit-
ness of EG is not defined absolutely but relatively as
the difference between the real and the pre-evaluation
values.

We further evaluated a kind of the simulate-and-
transfer method, in which the same simulation frame-
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Figure 4: The fitness of EG.

work as the EE method was used except that the
robotic evaluation was replaced by simulation carried
out using the robotic platform OpenHRP. Table 1
shows the all of the evolved individuals (CGs) in CP
after 50 evaluations. The first column shows the fit-
ness in simulation environment. Each CG was then
transferred into the robot and evaluated. The second
column shows the fitness based on robotic behavior,
and the third column shows whether the robot fell
down to the ground or not in robotic evaluation. It is
shown that nine out of ten individuals suffered from
the decreased fitness caused by falling in real world.
This result shows a typical gap between simulation
and real world ( “reality gap” ).

Table 1:
world.

Reality gap between simulation and real

830|814 (806 (797|781|769|766(751|743|73

35

Fitness (simulation)

Fitness (robotic
behavior)

Falling down
(With: x , without: o)

167(141(149(149(135|149|752|182(166|166

5 Conclusions

We introduced pre-evaluation into the embodied evo-
lution (EE) framework for a biped robot in order to
restrain robot behavior of which fitness contribution
is estimated to be low, specifically falling down to
the ground. We believe that the EE framework with
pre-evaluation is applicable to a wide variety of opti-
mization tasks by evolution in which the cost or risk
of fitness evaluation is not negligible. We adopted
two methods for pre-evaluator construction: PE1 and
PE2. We comparatively evaluated the proposed ar-
chitecture based on one of these two methods, the
original EE, and a conventional simulate-and-transfer
method.

Table 2 summarizes the characteristics of these
methods based on the results of the evaluation ex-
periments in terms of reality gap, calculation time,
the cost for evaluation in real world (e.g. the risk of
robot falling), and the cost of modeling or simulation.
Each evaluation result is represented by the size of a
circle or the thickness of a line in the table.
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Table 2: The comparison between proposed method
and other two methods.

EE with Pre-evaluation
Original|  prior implementation of | Sim. &
EE pre-evaluator Trans.
Min __——"""1] Max

Reality Gap O
Calculation Time O O— .| -
Real Evaluation
el O O—u1 . .
Simlulation/modelin
Cost ¢ o o 4 O O

The design of the evolutionary system for pre-
evaluation depends on the requirements of users as
described in Section 2. If we implement the evolution-
ary system for pre-evaluation to the utmost extent
before evolution, the framework will become equal to
the system with simulate-and-transfer except for the
robotic evaluation of fitness. Generation of the pre-
evaluator by PE1 corresponds to function optimiza-
tion by evolution, and the architecture is close to the
one in case of simulate-and-transfer. On the other
hand, if we let the evolution generate the system for
pre-evaluation to the utmost extent, each evaluation
result will get closer to the case with EE. However, in
this case the search space via evolution will get larger
and thus the good solutions might be difficult to be
obtained, as we observed the decrease in performance
in case of PE2. The most important thing in imple-
menting the proposed architecture is to consider the
tradeoffs shown in this table.

Humans evaluate the behavior in advance using
their internal models of the world before they actu-
ally do it. At the same time, receiving the feedback
from the real world, they build and refine their inter-
nal models. It might be interesting to investigate the
parallelism between the evolution of human intelli-
gence and the evolution in the proposed architecture.
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