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Abstract
Reinforcement Learning (RL) attracts much atten-

tion as a technique of realizing computational intelli-
gence such as adaptive and autonomous decentralized
systems. In general, however, it is not easy to put RL
into practical use. This difficulty includes a problem
of designing a suitable action space of an agent, i.e.,
satisfying two requirements in trade-off: (i) to keep
the characteristics (or structure) of an original search
space as much as possible in order to seek strategies
that lie close to the optimal, and (ii) to reduce the
search space as much as possible in order to expedite
the learning process.

In order to design a suitable action space adaptively,
in this paper, we propose a RL model with switch-
ing controllers based on Q-learning and Actor-Critic
to mimic a process of an infant’s motor development
in which gross motor skills develop before fine motor
skills. Then, a method for switching controllers is con-
structed by introducing and referring to the “entropy”.
Further, through computational experiments by using
a path planning problem with continuous action space,
the validity and the potential of the proposed method
have been confirmed.

1 Introduction
In recent years, artificial systems have become ex-

tremely complicated and enlarged. The conventional
way, in which systems are controlled in a top-down
manner mainly by humans, is facing up to the difficul-
ties of not only optimality but also adaptability and
flexibility. As one of the solutions to this issue, the
development of an autonomously adaptive system has
been ongoing. Engineers and researchers are paying
more attention to Reinforcement Learning (RL)[1] as
a key technique of realizing autonomous systems. In
general, however, it is not easy to put RL into practical
use. Such issues as satisfying the requirement of learn-
ing speed, resolving the perceptual aliasing problem,

and designing reasonable state and action spaces of
an agent, etc. must be resolved. Our approach mainly
deals with the problem of designing the action space.
By designing a suitable action space adaptively, it can
be expected that the other two problems will be re-
solved simultaneously. Here, the problem of designing
the action space involves the following two require-
ments: (i) to keep the characteristics (or structure) of
an original search space as much as possible in order
to seek strategies that lie close to the optimal, and (ii)
to reduce the search space as much as possible in order
to expedite the learning process. These requirements
are, in general, in conflict.

In order to design a suitable action space adaptively,
in this paper, we propose a RL model with switch-
ing controllers based on Q-learning and Actor-Critic
to mimic a process of an infant’s motor development
in which gross motor skills develop before fine mo-
tor skills. Here, the controller based on Q-learning
acquires gross motor skills, and the other controller
based on Actor-Critic acquires fine motor skills. Then,
a method for switching controllers, i.e., adjusting the
search space adaptively, is constructed by introduc-
ing and referring to the “entropy” which is defined
on action selection probability distributions in a state.
Some models which combine Q-learning and Actor-
Critic have been proposed so far [3, 4]. However, none
of the existing models aim to mimic the process of
the infant’s motor development, nor do they function
to switch from Q-learning to Actor-Critic depending
on the state, nor is the action selected by Q-learning
performed directly.

Through some computational experiments by us-
ing a path planning problem, the proposed method is
compared with an Actor-Critic method and three Q-
learning methods that divide the action space evenly
into 4, 8, and 16 spaces.
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2 Typical Reinforcement Learning
Methods

2.1 Q-learning

Q-learning works by calculating the Quality of a
state-action combination, namely Q-value, that gives
the expected utility of performing a given action in a
given state. By performing an action a ∈ AQ, where
AQ ⊂ A is the set of available actions in Q-learning
and A is the action space of the agent, the agent can
move from state to state. Each state provides the
agent a reward r.

The Q-value is updated according to the following
formula, when the agent is provided the reward:

Q(s(t-1), a(t-1)) ← Q(s(t-1), a(t-1))
+αQ{r(t-1) + γ max

b∈AQ

Q(s(t), b) −Q(s(t-1), a(t-1))}(1)

where Q(s(t-1), a(t-1)) is the Q-value for the state and
the action at the time step t-1, αQ ∈ [0, 1] is the learn-
ing rate of Q-learning, γ ∈ [0, 1] is the discount factor.

The agent selects an action according to the
stochastic policy, π(a|s), which based on the Q-value.
π(a|s) specifies probabilities for taking each action a
in each state s. Boltzmann selection, which is one of
the typical action-selection methods, is used in this
research. Therefore, the policy π(a|s) is calculated as
follows:

π(a|s) =
exp(Q(s, a)/τ)∑

b∈A
exp(Q(s, b)/τ)

(2)

where τ is a positive parameter labeled the tempera-
ture.

2.2 Actor-Critic

Actor-Critic methods have a separate memory
structure to explicitly represent the policy indepen-
dent of the value function. The policy structure is
called “Actor”, which selects actions, and the esti-
mated value function is called “Critic”, which criti-
cizes the actions made by the Actor. The Critic is a
state-value function. After each action selection, the
Critic evaluates the new state to determine whether
things have gone better or worse than expected. That
evaluation is TD-error:

δ(t-1) = r(t-1) + γV (s(t)) − V (s(t-1)) (3)

where V (s) is the state Value. This TD-error can be
used to evaluate the action just selected. If δ(t-1) is
positive, it suggests that the tendency to select a(t-1)
should be strengthened for the future, whereas if δ(t-1)

is negative, it suggests the tendency should be weak-
ened.

Then, V (s(t-1)) is updated according to Eq. (4)
in the Critic, based on this δ(t-1). In parallel, it is
updated for the stochastic policy, π(a|s), in the Actor.

V (s(t-1)) ← V (s(t-1)) + αCδ(t-1) (4)

where αC ∈ [0, 1] is the learning rate of the Critic.
It is typical for the normal distribution to be used,

shown in Eq. (5), as the stochastic policy in the Ac-
tor, when Actor-Critic is applied to a continuous ac-
tion space[2]. In this case, both the mean µ(s) and the
standard error of the mean σ(s) about the normal dis-
tribution are calculated using TD-error δ(t-1) in the
Actor, as Eq. (6),(7).

π(a|s) =
1

σ(s)
√

2π
exp(

−(a− µ(s))2

2σ(s)2
) (5)

µ(s(t-1)) ← µ(s(t-1)) + αµδ(t-1)(a(t-1) − µ(s(t-1)))
(6)

σ(s(t-1)) ← σ(s(t-1))
+ασδ(t-1)((a(t-1) − µ(s(t-1)))2 − σ(s(t-1))2)(7)

where αµ ∈ [0, 1], ασ ∈ [0, 1] are the learning rate of
the mean and the standard error of the mean respec-
tively. Here, if Eq. (7) is used directly, the standard
error could be 0 or a negative value. So, it is necessary
for the setting of the standard error to be creative to
specify the range, etc.

3 A Switching Reinforcement Learn-
ing from Q-learning to Actor-Critic

3.1 Outline of a Computational Model

Critic

Actor

Q-learning

Environment

reward,
state

action

Switching
Device

Figure 1: Proposed switching reinforcement learning
model.

In this section, we propose a RL model with switch-
ing controllers based on Q-learning and Actor-Critic to
mimic a process of an infant’s motor development.

The proposed model is constructed by two learning
controllers and a switching device, as shown in Fig. 1.
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Then, the following procedure is conducted to mimic
a process of an infant’s motor development in which
gross motor skills develop before fine motor skills.

1. The controller based on Q-learning (hereafter
called “QL controller”) estimates the Q-values for
each typical action pre-designed by humans. The
actions selected by the QL controller correspond
to gross motor skills.

2. After “sufficient learning” has been achieved in a
state s, the learning controller for the state s is
switched from Q-learning to Actor-Critic, as will
be described in detail below.

3. The controller based on Actor-Critic (hereafter
called “AC controller”) adjusts actions continu-
ously. The actions selected by the AC controller
correspond to fine motor skills.

It can be expected that the proposed model 1)
demonstrates a good performance with regard to the
ultimately obtained control rule, because it can ad-
just actions continuously unlike models using only a
QL controller. 2) has a better performance in the
early stages of learning than the model using only an
AC controller do by switching from the QL controller,
where the possible actions are limited beforehand. 3)
reduces a designer’s load and responsibilities in de-
signing the action space of the QL controller, because
the AC controller adjusts actions after switching the
controller.

3.2 A Method to Switch Controllers
A variety of methods to switch from the QL con-

troller to the AC controller can be considered. In this
paper, we propose a switching method referring to the
“entropy”, which is defined on action selection proba-
bility distributions in a state, and the number of learn-
ing opportunities in the state.

The entropy of action selection probability distri-
butions using Boltzmann selection in a state, H(s), is
defined by

H(s) = −(1/ log |AQ|)
∑
a∈AQ

π(a|s) log π(a|s), (8)

where |AQ| is the number of available actions of the
QL controller.

The switching method treats this entropy H(s) as
an index of sufficiency for the number of learning op-
portunities in the state.

The controller is switched to Actor-Critic, if the
following formula is satisfied:

H(s) < θH. (9)

In prior studies, Ito at el.[5] have referred to the
entropy as the residual entropy, and used the aver-
age of the residual entropies when switching from the
coarse-graining state space to the fine-graining one.
In our early studies[6, 7], we have used the entropy
as an index of a correctness of state aggregation when
adjusting the aggregation size of s.

In parallel, the controller is also switched to Actor-
Critic, if the following formula regarding the number
of learning opportunities in s, L(s), is satisfied:

L(s) > θL, (10)

where θL is set at a sufficiently big number. This is
used because the entropy can not be small after the
controller learned a sufficient number of times, if the
state space is designed too coarse-graining[6, 7].

When switching controllers, the following procedure
is conducted:
i) the state value of the Critic,V (s), is initialized by

V (s) = max
a∈AQ

Q(s, a). (11)

ii) the normal probability distribution used by the Ac-
tor is calculated by

µ(s) = arg max
a∈AQ

Q(s, a), (12)

σ(s) = |A|/(6 · |AQ|), (13)

where |A| is a size of the action space of the AC con-
troller. Here, Eq. (13) is presupposed to be designed
such that the action space of the QL controller is di-
vided evenly.

4 Computational Example

goal

(500,500)

(0,0)

450

start

450

Figure 2: Path planning problem.

The proposed method is applied to a so-called “path
planning problem” where an agent is navigated from
a start point to a goal area in a continuous space
as shown in Fig. 2. Here, the agent has a circular
shape (diameter = 50[mm]), and the continuous space
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Table 1: Parameters for Experiments.
Method Parameter Value

A, Q4, Q8, and Q16 αQ 0.1
A and AC αC, αµ, ασ 0.1

all γ 0.9
A, Q4, Q8, and Q16 τ 0.1

A θH 0.3
A θL 10000

is 500[mm] × 500[mm] bounded by the external wall
with internal walls as shown in black. The agent can
observe the center position of the agent: (xA, yA) as
the input, and move 25[mm] in a direction, i.e., decide
the direction: θA as the output.

The positive reinforcement signal rt = 10 (reward)
is given to the agent only when the center of the agent
arrives at the goal area and the reinforcement signal
rt = 0 at any other steps. The period from when the
agent is located at the start point to when the agent
is given a reward, labeled as 1 episode, is repeated.

After dividing the state space evenly into 20 ×
20 spaces, the proposed method (hereafter called
“method A”) is compared with an Actor-Critic
method (hereafter called “method AC”) and three Q-
learning methods that divide the action space evenly
into 4, 8, and 16 spaces (hereafter called “method Q4”,
“method Q8”, and “method Q16” respectively).

All initial values of the state and standard errors
are set at 0.0 and 1.0 respectively, and all initial means
are set to randomize within a range of [0.1, 1.0] for the
method AC. Then, all initial Q-values are set at 5.0 as
the optimistic initial values[1] for Q-learning methods.
Here, the initial values and the maximum limit of σ(x)
are set so that ±3σ becomes the size of the action
space: 2π.

Computer experiments have been done with param-
eters as shown in Table 1. Here, θH was set referring to
about 0.312: the maximal value of the entropy when
the highest selection probability for one action is 0.9,
θL was set in consideration of the enough big number.

The number of average steps required to accomplish
the task was observed during learning over 20 simula-
tions with various methods as described in Fig. 3.

Learning speed and obtained control rule: It can
be confirmed from Fig. 3 that, 1) method A and Q4
have good performances with regard to the learning
speed, 2) method A has good performance as well as
method AC with regard to the obtained control rule,
3) any proper control rule by method Q4, Q8, and Q16
couldn’t be obtained.

Therefore, we have confirmed that method A
demonstrates better performance than any other
method on the path planning problem with the con-
tinuous action space.
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Figure 3: Required steps.

5 Conclusion
In order to design the suitable action space adap-

tively, we propose in this paper the RL model with
switching controllers based on Q-learning and Actor-
Critic, and the method for switching controllers refer-
ring to the “entropy”. Then, through some computa-
tional experiments by using the path planning problem
with continuous action space, the validity and the po-
tential of the proposed method have been confirmed.

Our future projects include: 1) to apply more com-
plicated problems, 2) to investigate multi-step models
for mimicking the process of the infant’s motor devel-
opment, 3) to mimic the process of an infant’s percep-
tual development, etc.
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